MICROCHIP SAMA4CM SERIES

Dual Arm® Cortex®-M 4 Core SOC with I ntegrated Metrology
AFE and Advanced Security Featuresfor
Residential and C& | Smart Meters

Description

The Microchip SAM4CM series represents a family of system-on-chip solutions for residential and polyphase metering
applications. The devices offer up to class 0.2 metrology accuracy over a dynamic range of 3000:1 within the industrial
temperature range and are compliant with ANSI C12.20-2002 and IEC 62053-22 standards.

A seamless extension of Microchip’s SAM4, SAM4CP and SAM4C family of microcontrollers and solutions for smart
grid security and communications applications, these metrology-enabled devices offer an unprecedented level of inte-
gration and flexibility with dual 32-bit ARM® Cortex®-M4 RISC processors running at a maximum speed of 120 MHz
each("), up to 2 Mbytes of embedded Flash, 304 Kbytes of SRAM and on-chip cache.

The unique dual ARM Cortex-M4 architecture supports implementation of signal processing, application and communi-
cations firmware in independent partitions, and offers the ability to extend program and data memory via parallel external
bus interface (EBI) to ensure scalability of the design to meet future requirements.

The peripheral set includes metrology-specific precision voltage reference, up to seven (7) simultaneously sampled
Sigma-Delta ADC subsystems supporting three (3) voltage and four (4) current measurement channels (polyphase ver-
sions only), an extensive set of embedded cryptographic features, anti-tamper, Floating Point Unit (FPU), four USARTS,
two UARTSs, two TWIs, four SPlIs, three 16-bit PWMs, two 3-channel general-purpose 16-bit timers, 6-channel 10-bit
ADC, battery-backed RTC with <1 yA consumption and a 38 x 6 segmented LCD controller.

To ensure the distinct separation of metrology and application or communication functions, the SAM4CM integrates a
dedicated Cortex-M4F core that manages all necessary metrology resources and memory.

© 2022 Microchip Technology Inc. DS60001719B-page 1

SAM4CM SERIES

Features

» Application/Master Core
- ARM Cortex-M4 running at up to 120 MHz(")
- Memory Protection Unit (MPU)
- DSP Instruction
- Thumb®-2 instruction set
- Instruction and Data Cache Controller with 2 Kbytes Cache Memory
- Memories

* Up to 2 Mbytes of Embedded Flash for Program Code (I-Code bus) and Program Data (D-Code bus) with Built-in ECC (2-bit
error detection and 1-bit correction per 128 bits)

* Up to 256 Kbytes of Embedded SRAM (SRAMO) for Program Data (System bus)
+ 8 Kbytes of ROM with embedded bootloader routines (UART) and In-Application Programming (IAP) routines
« Coprocessor (provides ability to separate application, communication or metrology functions)
- ARM Cortex-M4F running at up to 120 MHz("
- |IEEE® 754 Compliant, Single-precision Floating-Point Unit (FPU)
- DSP Instruction
- Thumb-2 instruction set
- Instruction and Data Cache Controller with 2 Kbytes of Cache Memory
- Memories

* Up to 32 Kbytes of Embedded SRAM (SRAM1) for Program Code (I-Code bus) and Program Data (D-Code bus and System
bus)

» Up to 16 Kbytes of Embedded SRAM (SRAM2) for Program Data (System bus)
» Symmetrical/Asynchronous Dual Core Architecture
- Interrupt-based Interprocessor Communication
- Asynchronous Clocking
- One Interrupt Controller (NVIC) for each core
- Each Peripheral IRQ routed to each NVIC Input
» Cryptography
- High-performance AES 128 to 256 with various modes (GCM, CBC, ECB, CFB, CBC-MAC, CTR)
- TRNG (up to 38 Mbit/s stream, with tested Diehard and FIPS)
- Public Key Crypto accelerator and associated ROM library for RSA, ECC, DSA, ECDSA

- Integrity Check Module (ICM) based on Secure Hash Algorithm (SHA1, SHA224, SHA256),
DMA-assisted

+ Safety
- Up to two physical Anti-tamper Detection 1/Os with Time Stamping and Immediate Clear of General Backup Registers
- Security Bit for Device Protection from JTAG Accesses
» Shared System Controller
- Power Supply
+ Embedded core and LCD voltage regulator for single-supply operation
» Power-on-Reset (POR), Brownout Detector (BOD) and Dual Watchdog for safe operation
+ Ultra-low-power Backup mode (< 0.5 pA Typical @ 25°C)
- Clock
» 3 to 20 MHz oscillator supporting crystal, ceramic resonator or external clock signal. Also supports clock failure detection
+ Ultra-low power 32.768 kHz oscillator supporting crystal or external clock signal and frequency monitoring
» High-precision 4/8/12 MHz factory-trimmed internal RC oscillator with on-the-fly timming capability
* One high-frequency PLL up to 240 MHz, one 8 MHz PLL with internal 32 kHz input, as source for high-frequency PLL
» Low-power slow clock internal RC oscillator as permanent clock

- Ultra-low-power RTC with Gregorian and Persian Calendar, Waveform Generation in Backup mode and Clock Calibration Circuitry
for 32.768 kHz Crystal Frequency Compensation Circuitry

- Up to 23 Peripheral DMA (PDC) Channels

DS60001719B-page 2 © 2022 Microchip Technology Inc.

SAM4CM SERIES

» Shared Peripherals
- One Low-power Segmented LCD Controller
+ Display capacity of 38 segments and 6 common terminals
» Software-selectable LCD output voltage (Contrast)
* Low current consumption in Low-power mode
+ Can be used in Backup mode
- Up to four USARTSs with ISO7816, IrDA®, RS-485, SPI and Manchester Mode

- Two 2-wire UARTs with one UART (UART1) supporting optical transceiver providing an electrically isolated serial communication
with hand-held equipment, such as calibrators, compliant with ANSI-C12.18 or IEC62056-21 norms

- Up to two 400 kHz Master/Slave and Multi-Master Two-wire Interfaces (12C compatible)
- Up to four Serial Peripheral Interfaces (SPI)
- Two 3-channel 16-bit Timer/Counters with Capture, Waveform, Compare and PWM modes
- Quadrature Decoder Logic and 2-bit Gray Up/Down Counter for Stepper Motor
- 3-channel 16-bit Pulse Width Modulator
- 32-bit Real-time Timer
» Energy Metering Analog Front-End
- Two-phase (SAM4CMS) or three-phase (SAM4CMP) Energy Metering Analog Front-End
- Works with the Microchip Metrology library
- Compliant with Electricity Metering Standards up to Class 0.2 (ANSI C12.20-2002 and IEC 62053-22)
- Four or seven Sigma-Delta ADC measurement channels, 20-bit resolution, 102 dB dynamic range

- Current channels with Pre-gain (x1, x2, x4, x8) support directly connected Shunt, Current Transformer and Rogowsky Coils sen-
sors without any active components

- Dedicated current channel for neutral current measurement (anti-tamper)

- 1.2V Precision Voltage Reference. Temperature drift: 10 ppm/C typical with software correction using factory-programmed calibra-
tion registers (SAM4CMx8C/16C/32C devices), 50 ppm typical (SAM4CMS4C devices)

- Dedicated 2.8V LDO regulator to supply the Analog Front-End
- 3.0V to 3.6V operation, ultra-low-power: < 2.5 mW / channel @ 3.3V
* Analog Conversion Block
- 6-channel, 500 kS/s, Low-power 10-bit SAR ADC with Digital Averager providing 12-bit Resolution at 30 kS/s
- Software-controlled On-chip Reference ranging from 1.6V to 3.4V
- Temperature Sensor and Backup Battery Voltage Measurement Channel
* Debug
- Star Topology AHB-AP Debug Access Port Implementation with Common SW-DP / SWJ-DP Providing Higher Performance than
Daisy-chain Topology
- Debug Synchronization between both Cores (cross triggering to/from each core for Halt and Run Mode)
« /0

- Up to 57 I/O lines with External Interrupt Capability (edge or level sensitivity), Schmitt Trigger, Internal Pull-up/pull-down,
Debouncing, Glitch Filtering and On-die Series Resistor Termination

» Package
- 100-lead LQFP, 14 x 14 mm, pitch 0.5 mm
- 100-pin TQFP, 14 x 14 x 1.0 mm, pitch 0.5 mm

Note 1: 120 MHz: -40°C/+85°C, VDDCORE = 1.2V

© 2022 Microchip Technology Inc. DS60001719B-page 3

SAM4CM SERIES

1. Configuration Summary

The SAM4CM devices differ in memory size, package and features. Table 1-1 summarizes the different device configurations.

Table 1-1:

Configuration Summary

Feature

SAM4CMP32C

SAM4CMP16C

SAM4CMP8C

SAM4CMS32C

SAM4CMS1

6C | SAM4CMS8C | SAM4CMS4C

Flash

2048 Kbytes

1024 Kbytes

512 Kbytes

2048 Kbytes

1024 Kbytes

512 Kbytes 256 Kbytes

SRAM

256 + 32 +16
Kbytes

128 + 16 + 8 Kbytes

256 + 32 +16
Kbytes

128 + 16 + 8 Kbytes

Package

LQFP 100
TQFP100

LQFP 100

TQFP100

LQFP100

Number of
PlOs

52

57

External Bus
Interface

8-bit data

16-bit Timer

6 channels

16-bit PWM

3 channels

UART/
USART

2/3

2/4

spI()

174 +3

14 + 4

T™WI

10-bit ADC
Channels@

Energy
Metering
Analog Front
End

7 channels (3 voltages, 4 currents)

4 channels (2

voltages, 2 currents)

Cryptography

AES, CPKCC, ICM (SHA), TRNG

Segmented
LCD

33 segments x 6 commons

38 segme

nts x 6 commons

Anti-
Tampering
Inputs

Flash Page
Size

512 bytes

Flash Pages

2 x 2048

2048

1024

2 x 2048

2048

1024 512

Flash Lock
Region Size

8 Kbytes

Flash Lock
Bits

2x128

128

64

2x128

128

64 32

Note 1:

1/4 + 3 = Number of SPI Controllers / Number of Chip Selects + Number of USARTs with SPI mode.

2: One channel is reserved for internal temperature sensor and one channel for VDDBU measurement.

DS60001719B-page 4

© 2022 Microchip Technology Inc.

SAM4CM SERIES

2. Block Diagram
Figure 2-1: SAMA4CM Series Block Diagram
SA M 4 CM series [Serial Wire and JTAG Debug Port (SW-DP/SWJ-DP) B oI
TDO/TRACESWO
TMS/SWDIO
g TCK/SWCLK
AHB-AP : AHB-AP L JTAGSEL
Cortex-M4 Processor | Cortex-M4 Processor
CMCCOo (CM4P0) | (CM4P1) cMccH
PDCO | PDC1
2 KB Cache 2 KB Cache
Memory ICode / DCode bus System bus | ICode / DCode bus System bus Memory
|
|
asynchronous
M M/S ™] AHB | AHB M [M/S]
Bridgt
M M
AHB Multilayer Bus Matrix 0 é é AHB Multilayer Bus Matrix 1
S S S S 1] S S | S S S
4. > | 2
2 |
|
Flash S-Bus S-Bus SMCo | S-Bus 1/D-Bus
21024 KB i
1024 KB
oows | | SRAMO [| ROM CPKCC : SRAM2 SRAM1
B 256KB (SAM-BA 16KB 32KB
128KB CPKCL) | 8KB 16KB
User Sign.
Unique Id. |
ECC |
|
Vo |
=l I R
TWDO..1 _ |
|
URXDO <#> VDDIN_AFE
UTXDO < > | EaRT0 & PDCO) | VDDA
X003 | VREF_AFE
TXDO. 3 < > 4x L RIS I VP13
SCKO0..3 > E
RTS0..3 < USART | VN
CTS0.3 > PDCO
| 1P0..3
TCLK([0:2] Timer Counter A | INO..3
TIOA[:2] <:::> | B
TIOB([0:2] > | > UTXD1
| URXD1
TCLK[4:5] Timer Counter B | Optical Port
TIOA[4:5] < > < # Dl
TIOB[4:5] : <:::> PWM » PWMO..3
SPI0_NPCS[3:0] > ! ET:‘Z;Z'C?S L
SPI0_MOSI -
SPIO_ISo < SHY <:::> : [
- D[7:0]
[PDCo| i SMC1 A23:0]
> NANDALE
[Temp. Sensoﬂ PDCO | om0 NANDGLE
ADO.5 > 10-bit ADC | NCS0..3
<#> Bus
ADVREF = — ok Ra e | NWE
Dici | AHBO > NRD
igital Averager MATRIX
Powered by VDDLCD : A
COM[0..5] <— sLcD
sy =T s] =] : | :
SUB-SYSTEM 0 | SUB-SYSTEM 1
T 7T | coressPerPHERALS | SYSTEM CONTROLLER !
| CLOCK GENERATOR PO TT T CLOGKE SYSTEM CONTROLLER |
1 PIO PLLB PLLA - PMC POR and BOD Automatic | <«—+—— VDDIO
|| AIBIC 80 - 240 MHz 8 MHz | [CLOCK SOURCES VDDCORE | | Power-Switch |<«———— vopsu
| Powered by VDDBU_SW |
| RC OSC RC OSC GPBR POR Supply Mon. LCD Voltage |
| ‘ Ll ‘ |4/8/12 MHzI | 32kHz | | 16 x 32bits | AL | VDDBU VDDIO Regulator |7 [~ VP°-°P
1 RSTC : |—I — VDDIN
XTAL OSC | | XTAL OSC RTC Anti- POR CORE Voltage
: ‘ il ‘ | 3-20 MHz | | 32.768KkHz SURC e pembind | || Tampering VDDIO Regulator | [~ VopouT
2 > | &= T > T
S K oV) S LS & 92 N N £ < A
ENN} &L QO S S "’ 4 {))
© .§§+00 & Q\@) /\00 QG{.Q é&@ N & (8_?- «
& & N
&

© 2022 Microchip Technology Inc.

DS60001719B-page 5

SAM4CM SERIES

3. Signal Description

Table 3-1 provides details on signal names classified by peripheral.

Table 3-1: Signal Description List
Active Voltage
Signal Name Function Type Level Reference Comments
Power Supplies
VDDIO - - -
VDDBU - - -
VDDIN - - -
VDDLCD - - -
VDDOUT Power - - -
Table 5-1
VDDPLL See Table 5 ~ ~ ~
VDDCORE - - -
VDDIN_AFE - - -
VDDA - - -
GND Ground - - -
GNDA - - -
GNDREF - - -
Clocks, Oscillators and PLLs
XIN Main Crystal Oscillator Input Analo - XIN is a clock input when
- 9 VDDIO the 3 to 20 MHz oscillator
XOUT Main Crystal Oscillator Output Digital - is in Bypass mode.
XIN32 Slow Clock Crystal Oscillator Input - XIN32 is a clock input
Analog when the 32.768 kHz
Diqital VDDBU " isinB
XOUT32 Slow Clock Crystal Oscillator Output igita - oscillator is in Bypass
mode.
PCKO-PCK2 Programmable Clock Output Output - VDDIO -
Real-Time Clock
Digital
RTCOUTO Programmable RTC Waveform Output Output - VDDIO -
Supply Controller
Digital
FWUP Force Wake-up Input Input Low VDDBU External Pull-up needed
. . Digital External Pull-up or Pull-
TMPO Anti-tampering Input 0 Input - VDDBU down resistor needed
TMP1 Anti-tampering Input 1 Digital - VDDIO -
Input
0: The device is in Backup
. Digital mode.
SHDN Active Low Shutdown Control - VDDBU
Output 1: The device is running
(not in Backup mode).
WKUPO Wake-up Input 0 o - VDDBU -

DS60001719B-page 6

© 2022 Microchip Technology Inc.

SAM4CM SERIES

Table 3-1: Signal Description List (Continued)
Active Voltage
Signal Name Function Type Level Reference Comments
WKUP1-13 Wake-up Input 1 to 13 ':I)r:%'ltf:' - VDDIO -

© 2022 Microchip Technology Inc.

DS60001719B-page 7

SAM4CM SERIES

Table 3-1: Signal Description List (Continued)
Active Voltage
Signal Name Function Type Level Reference Comments
Serial Wire/JTAG Debug Port - SWJ-DP
TCK/SWCLK Test Clock/Serial Wire Clock Digital -
VvDDIO -
DI Test Data In Input -
TDO/TRACESWO Test Data Out / Trace Asynchronous Digital _
Data Out Output
VvDDIO -
Test Mode Select input / iai
TMS/SWDIO o P Digital V-1 _
Serial Wire Input/Output o
JTAGSEL JTAG Selection Digital |0, vDDBY | Fermanentinternal
Input pull-down
Flash Memory
ERASE Flash and NVM Configuration Bits Erase Digital High VDDIO Permanent Internal
Command Input pull-down
Reset/Test
NRST Synchronous Microcontroller Reset Dlggal 4 Low VDDIO ESITTJ?)nem Internal
TST Test Select Digital B VDDBU Permanent Internal
Input pull-down
Universal Asynchronous Receiver Transceiver - UARTX
Digital/ .
URXDx UART Receive Data Analog - Analog mode for optical
receiver
Input VDDIO
UTXDx UART Transmit Data Digital - -
Output
PIO Controller - PIOA - PIOB - PIOC
PAO-PA31 Parallel 10 Controller A - -
PB0-PB21 Parallel 10 Controller B iqi - -
Digital I/ VDDIO
PC0-PC9 Parallel 10 Controller C o - -
External Bus Interface - EBI
D[7:0] Data Bus D'gga' S - -
A[23:0] Address Bus Digital - VDDIO -
Output
Static Memory Controller - SMC
NCS0-NCS3 Chip Select Lines -
NRD Read Signal -
NWE Write Enable Digital =1 VDDIO -
Output
NBS0-NBS1 Byte Mask Signal -
NWRO-NWR1 Write Signal -

DS60001719B-page 8

© 2022 Microchip Technology Inc.

SAM4CM SERIES

Table 3-1: Signal Description List (Continued)
Active Voltage
Signal Name Function Type Level Reference Comments
Universal Synchronous Asynchronous Receiver Transmitter - USARTx
SCKx USARTx Serial Clock D'gga' - -
. Digital
TXDx USARTXx Transmit Data - -
Output
RXDx USARTX Receive Data ?r']%'ft" - VDDIO -
RTSx USARTX Request To Send Digital - -
Output
Digital
CTSx USARTXx Clear To Send - -
Input
Timer/Counter - TC
TCLKXx TC Channel x External Clock Input ?r:%ltf’:l - -
TIOAX TC Channel x I/O Line A Digital I/ - VDDIO -
TIOBx TC Channel x I/0O Line B o - -
Pulse Width Modulation Controller - PWMC
Digital
PWMx PWM Waveform Output for channel x - VDDIO -
Output
Serial Peripheral Interface - SPI
SPIO_MISO Master In Slave Out Digital 1 _ -
Input
SPI0_MOSI Master Out Slave In - -
SPCKO SPI Serial Clock 8:ﬂgilt - VDDIO -
SPI0_NPCS0 SPI Peripheral Chip Select 0 Low NPCSO0 s also NSS for
Slave mode
SPI0O_NPCS1- . .
SPI0_NPCS3 SPI Peripheral Chip Select Output Low -
Segmented LCD Controller - SLCDC
COMO0O-COM5 Common Terminals - -
Output VDDIO
SEGO-SEG39 Segment Terminals - -
Two-wire Interface - TWI
TWDXx TWIx Two-wire Serial Data D'gga' V- -
— VvVDDIO
TWCKx TWIx Two-wire Serial Clock Digital - -
Output
Analog
ADVREF External Voltage Reference for ADC ﬁngtg - VDDIN -

© 2022 Microchip Technology Inc. DS60001719B-page 9

SAM4CM SERIES

Table 3-1: Signal Description List (Continued)
Active Voltage
Signal Name Function Type Level Reference Comments
10-bit Analog-to-Digital Converter - ADC
_ Analog, _ ADC input range limited to
ADO-AD3 Analog Inputs Digital VDDIO [0. ADVREF]
Fast Flash Programming Interface - FFPI
PGMENO-PGMEN1 | Programming Enabling Digital - -
PGMMO-PGMM3 Programming Mode Input - -
PGMDO0-PGMD15 Programming Data Dlggal V - -
PGMRDY Programming Ready Digital High VDDIO -
PGMNVALID Data Direction Output | | ow -
PGMNOE Programming Read Digital -
| Low
PGMNCMD Programming Command nput -
Energy Metering Analog Front End - EMAFE
L Analog
Precision 1.2V Voltage Reference Input
VREF_AFE and Output for EMAFE Input/ - -
Output
VPx Voltage Channel x, Positive Input - -
. VDDA
VN Voltage Channels, Common Negative
Input Analog - -
Input
IPx Current Channel x, Positive Input - -
INX Current Channel x, Negative Input - -

DS60001719B-page 10 © 2022 Microchip Technology Inc.

SAM4CM SERIES

4, Package and Pinout

41 100-lead LQFP/TQFP Package Outline

The 100-lead LQFP/TQFP packages have a 0.5 mm ball pitch and respects Green standards.

Figure 4-1 shows the orientation of the 100-lead LQFP/TQFP packages. Refer to Figure 47-1 “100-lead LQFP Package Drawing” and Fig-

ure 47-2 “100-lead TQFP Package Drawing”.

Figure 4-1: Orientation of the 100-lead LQFP/TQFP Packages
75 51
M M
76 — 50
100 A L 26
0 1]
1 25

© 2022 Microchip Technology Inc.

DS60001719B-page 11

SAM4CM SERIES

4.2 100-lead LQFP/TQFP Pinout

Table 4-1: SAM4CMP32C/16C/8C 100-lead LQFP/TQFP Pinout

1 PB6 26 TDI/PBO 51 VDDIO 76 ADVREF

2 PB7 27 TCK/SWCLK/PB3 52 GND 77 GND

3 IN2 28 TMS/SWDIO/PB2 53 PA31 78 PB13/AD3

4 GND 29 ERASE/PC9 54 GND 79 PAS5/AD2/PGMRDY
5 P2 30 TDO/T/R;/—EC;ESWO 55 VDDPLL 80 PA4/AD1/PGMNCMD
6 PB8 31 PC1 56 PA28 81 PA12/AD0/PGMDO
7 IN1 32 PC6 57 PA27/PGMD15 82 VDDIN

8 IP1 33 VDDIO 58 PAG6/PGMNOE 83 VDDOUT

9 INO 34 VDDBU 59 VDDCORE 84 VP3

10 IPO 35 FWUP 60 PA3 85 VP2

1 GND 36 JTAGSEL 61 PA21/PGMD9 86 VDDCORE

12 VDDCORE 37 SHDN 62 PA22/PGMD10 87 VP1

13 PB9 38 TST 63 VDDIO 88 PAO/PGMENO
14 PB10 39 WKPO/TMPO 64 VDDIN_AFE 89 VN

15 PB11 40 XIN32 65 - 90 VREF_AFE

16 PB12 41 XOUT32 66 PA23/PGMD11 91 GNDREF

17 PB14 42 GND 67 PA9/PGMM1 92 VDDLCD

18 PB15 43 PB4 68 PA10/PGMM2 93 GNDA

19 PA26/PGMD14 44 VDDCORE 69 PA11/PGMM3 94 VDDA
20 PA25/PGMD13 45 PB5 70 PA13/PGMD1 95 IN3
21 PA24/PGMD12 46 PC7 71 PA14/PGMD2 96 PA1/PGMEN1
22 PA20/PGMD8 47 PCO 72 PA15/PGMD3 97 IP3
23 PA19/PGMD7 48 NRST 73 PA16/PGMD4 98 PA7/PGMNVALID
24 PA18/PGMD6 49 VDDIO 74 PA17/PGMD5 99 VDDIO
25 PA8/PGMMO 50 PA30 75 VDDIO 100 PA2

DS60001719B-page 12 © 2022 Microchip Technology Inc.

SAM4CM SERIES

Table 4-2: SAM4CMS32C/16C/8C/4C 100-lead LQFP/TQFP Pinout

1 PB6 26 TDI/PBO 51 VDDIO 76 ADVREF

2 PB7 27 TCK/SWCLK/PB3 52 GND 77 GND

3 PB18 28 TMS/SWDIO/PB2 53 PA31 78 PB13/AD3

4 GND 29 ERASE/PC9 54 GND 79 PA5/AD2/PGMRDY
5 PB19 30 TDO/T;TD'T‘BC,]ESWO 55 VDDPLL 80 PA4/AD1/PGMNCMD
6 PB8 31 PC1 56 PA28 81 PA12/AD0/PGMDO
7 IN1 32 PC6 57 PA27/PGMD15 82 VDDIN

8 IP1 33 VDDIO 58 PA6/PGMNOE 83 VDDOUT

9 INO 34 VDDBU 59 VDDCORE 84 PB21

10 IPO 35 FWUP 60 PA3 85 VP2

1 GND 36 JTAGSEL 61 PA21/PGMD9 86 VDDCORE

12 VDDCORE 37 SDHN 62 PA22/PGMD10 87 VP1

13 PB9 38 TST 63 VDDIO 88 PAO/PGMENO
14 PB10 39 WKUPO/TMPO 64 VDDIN_AFE 89 VN

15 PB11 40 XIN32 65 - 90 VREF_AFE

16 PB12 41 XOUT32 66 PA23/PGMD11 91 GNDREF

17 PB14 42 GND 67 PA9/PGMM1 92 VDDLCD

18 PB15 43 PB4 68 PA10/PGMM2 93 GNDA

19 PA26/PGMD14 44 VDDCORE 69 PA11/PGMM3 94 VDDA
20 PA25/PGMD13 45 PB5 70 PA13/PGMD1 95 PB16/TMP1
21 PA24/PGMD12 46 PC7 71 PA14/PGMD2 96 PA1/PGMEN1
22 PA20/PGMD8 47 PCO 72 PA15/PGMD3 97 PB17
23 PA19/PGMD7 48 NRST 73 PA16/PGMD4 98 PA7/PGMNVALID
24 PA18/PGMD6 49 VDDIO 74 PA17/PGMD5 99 VDDIO
25 PA8/PGMMO 50 PA30 75 VDDIO 100 PA2

© 2022 Microchip Technology Inc.

DS60001719B-page 13

SAM4CM SERIES

5. Power Supply and Power Control

5.1 Power Supplies
The SAM4CM has several types of power supply pins. In most cases, a single supply scheme for all power supplies (except VDDBU) is
possible. Figure 5-1 shows power domains according to the different power supply pins.

Figure 5-1: Power Domains

VDDBU VDDIO VDDPLL VDDCORE
v v

AUTOMATIC POWER PLLA, RC 0SC Cortex-M4 Cortex-M4F
SWITCH PLLE | [4- 12 MHz (CM4P0) (CM4P1)

Y VDDBU_SW (VDDIO or VDDBU)
VDDA Voltage RC OSC 32 kHz | SRAM, ROM |

VDDIN_AFE — Regulator
XTAL OSC 32 kHz | Flash Logic | |
Energy Metering RTC, RTT, RSTC, Peripherals
VDDA k Analog-Front-End Backup, Reg, ... (SPI, USART,...)
¥ ¥ ¥
Core Voltage 10-bit ADC, Temp. Sensor,
VDDOUT D: RegUlator Voltage Reference PIO Controller
VODIN [— ¥] ¥
LCD Voltage LCD Analog Buffers
Regulator + Switch Array

Y

A
A 4

"

VDDLCD ADVREF
Table 5-1: Power Supply Voltage Ranges“)
Power Supply Range Comments
Flash memory charge pumps supply for erase and program operations, and read
operation.
VDDIO 1.6V to 3.6V Input/Output buffers supply.

EMAFE digital functions supply.
Restrictions on range may apply. Refer to Section 46. “Electrical Characteristics”.

Backup area power supply.
VDDBU is automatically disconnected when VDDIO is present (> 1.9V).

vDDBU(Legend:) 1.6V to 3.6V

Core voltage regulator supply, LCD voltage regulator supply, ADC and programmable
VDDIN 1.6V to 3.6V voltage reference supply.
Restrictions on range may apply. Refer to Section 46. “Electrical Characteristics”.

LCD voltage regulator output.
VDDLCD 2.5V to 3.6V External LCD power supply input (LCD regulator not used).
VDDIO/VDDIN must be supplied when the LCD Controller is used.

DS60001719B-page 14 © 2022 Microchip Technology Inc.

SAM4CM SERIES

Table 5-1: Power Supply Voltage Ranges!") (Continued)
Power Supply Range Comments
VDDPLL 1.08V to 1.32V | PLLA and PLLB supply.
VDDCORE 1.08V to 1.32V Core logic, processors, memories and analog peripherals supply.
VDDIN_AFE 3.00V to 3.60V EMAFE regulator input.
EMAFE regulator output (2.8V).
VDDA 2.70 to 2.90V))
EMAFE analog functions power supply input.

Note 1: In all power modes except Backup mode, all power supply inputs must be powered.

Legend: VDDBU must be powered from an external source to ensure proper start-up. The external source must meet the timing and
voltage level requirements described in Section 46.2.2 “Recommended Power Supply Conditions at Powerup”.

511 Core Voltage Regulator
The core voltage regulator is managed by the Supply Controller.
It features two operating modes:

» In Normal mode, the quiescent current of the voltage regulator is less than 500 pA when sourcing maximum load current, i.e. 120
mA. Internal adaptive biasing adjusts the regulator quiescent current depending on the required load current. In Wait Mode, quies-
cent current is only 5 pA.

» In Backup mode, the voltage regulator consumes less than 100 nA while its output (VDDOUT) is driven internally to GND.
The default output voltage is 1.20V and the start-up time to reach Normal mode is less than 500 ps.
For further information, refer to Table 46-16 “Core Voltage Regulator Characteristics”.

5.1.2 LCD Voltage Regulator
The SAM4CM embeds an adjustable LCD voltage regulator that is managed by the Supply Controller.

This internal regulator is designed to supply the Segment LCD outputs. The LCD regulator output voltage is software selectable with 16
levels to adjust the display contrast.

If not used, its output (VDDLCD) can be bypassed (Hi-z mode) and an external power supply can be provided onto the VDDLCD pin. In
this case, VDDIO still needs to be supplied.

The LCD voltage regulator can be used in all power modes (Backup, Wait, Sleep and Active).

For further information, refer to Table 46-18 “LCD Voltage Regulator Characteristics”.

51.3 Automatic Power Switch

The SAM4CM features an automatic power switch between VDDBU and VDDIO. When VDDIO is present, the backup zone power supply
is powered by VDDIO and current consumption on VDDBU is about zero (around 100 nA, typ.). When VDDIO is removed, the backup
area of the device is supplied from VDDBU. Switching between VDDIO and VDDBU is transparent to the user.

514 EMAFE Voltage Regulator

The SAM4CM series embeds a 2.8V voltage regulator to supply its Energy Metering Analog Front-End (the VDDA pin). This regulator is
under software control. When the EMAFE voltage regulator is turned off, its output stage is placed in High-impedance mode and thus can
be forced by an external voltage source.

5.1.5 Typical Powering Schematics

The SAM4CM series supports 1.6V to 3.6V single-supply operation. Restrictions on this range may apply depending on enabled features.
Refer to Section 46. “Electrical Characteristics”.

Note: Figure 5-2, Figure 5-3 and Figure 5-4 show simplified schematics of the power section.

5.1.5.1 Single Supply Operation

Figure 5-2 below shows a typical power supply scheme with a single power source. VDDIO, VDDIN, VDDIN_AFE and VDDBU are derived
from the main power source (typically a 3.3V regulator output) while VDDCORE, VDDPLL, VDDLCD, and VDDA are fed by the embedded
regulator outputs.

© 2022 Microchip Technology Inc. DS60001719B-page 15

SAM4CM SERIES

Figure 5-2: Single Supply Operation
SAM4CM
VDDBU i Backup Region
L

AUTOMATIC

POWER Mg XTAL OSC 32 kHz

SWITCH
VDDIO I— RTC, RTT, RSTC,
[2 L Backup, Reg, ...

(1) vpbbLCD
PR ;,__[]‘_ LCD Voltage
Regulator
Main

L

VDDIN 10-bit ADC,
Supply N ouT 3.3V P [~ Temp. Sensor, A
J_ L Voltage Ref.
Voltage
II' LCD Analog
Regulator
Buffers
Core Voltage =P
é VDDOUT] Regulator Switch Array

VDDCORE

VDDPLL

VDDIN_AFE VDDA Voltage Energy Metering
Regulator Analog-Front-End
VDDA

Note 1: Internal LCD Voltage Regulator can be disabled to save its operating current. VDDLCD must then be provided externally.

DS60001719B-page 16 © 2022 Microchip Technology Inc.

SAM4CM SERIES

5.1.5.2 Single Supply Operation with Backup Battery

Figure 5-3 shows the single-supply operation schematic from Figure 5-2, improved by adding a backup capability. VDDBU is supplied with
a separate backup battery while VDDIO, VDDIN and VDDIN_AFE are still connected to the main power source. Note that the TMP1 and
RTCOUTO pins cannot be used in Backup mode as they are referred to VDDIO, which is not powered in this application case. To keep
using these pins in Backup mode, VDDIO must be maintained.

Figure 5-3: Single Supply Operation with Backup Battery

SAM4CM
Backup Power Supply

Backup (1.6V-3.6V) VDDBU i Backup Region
Ll RC OSC 32 kHz
Battery | + AUTOMATIC
. I power M XTAL OSC 32 kHz

- SWITCH
I VDDIO RTC, RTT, RSTC,
|_ Backup, Reg, ...

VDDLCD
€-=-=---- ;,_—[]‘_ LCD Voltage
Regulator
Main I

L

Suppl VDDIN o-is ARG,
ﬂ» IN ouT J_ @ [Temp. Sens?r,
Voltage Ref.
Voltage ‘I’
LCD Analog
Regulator
Buffers
>|EN Core Voltage +
¢ VDDOUT [] Regulator Switch Array

VDDCORE

VDDPLL

VDDIN_AFE VDDA Voltage Energy Metering
Regulator Analog-Front-End
VDDA ,

—i—

SHDN (1)

— > FWUP
External Wake-up Signal

Note 1: Example with the SHDN pin used to control the main regulator enable pin. SHDN defaults to VDDBU at startup and when the
device wakes up from a wake-up event (external pin, RTC alarm, etc.). When the device is in Backup mode, SHDN defaults
to 0.

© 2022 Microchip Technology Inc. DS60001719B-page 17

SAM4CM SERIES

5.1.5.3 Single Power Supply using One Main Battery and LCD Controller in Backup Mode

Figure 5-4 below shows a typical power supply scheme that maintains VDDBU, VDDIO, and VDDLCD when entering Backup mode. This
is useful to enable the display and/or some supplementary wake-up sources in Backup mode when the main voltage is not present.

In this power supply scheme, the SAM4CM can wake up both from an internal wake-up source, such as RTT, RTC and VDDIO Supply
Monitor, and from an external source, such as generic wake-up pins (WKUPX), anti-tamper inputs (TMPO/1) or force wake-up (FWUP).

Note: The VDDIO supply monitor only wakes up the device from Backup mode on a negative-going VDDIO supply (as system alert).
As a result, the supply monitor cannot be used to wake up the device when the VDDIO supply is rising at power cycle. Refer
to Section 20. “Supply Controller (SUPC)” for more information on the VDDIO supply monitor.

Figure 5-4: Single Power Supply using Battery and LCD Controller in Backup Mode
SAM4CM
VDDBU i Backup Region
L

AUTOMATIC
POWER MM XTAL OSC 32 kHz

SWITCH
VDDIO — RTC, RTT, RSTC,
|_ | Backup, Reg, ...

(1) vDDLCD
R r[]<_ LCD Voltage
. Regulator
Main
Supply I

L1

IN ouT .
J_ VDDIN |_ 10-bit ADC,
Voltage Automatic Temp. Sensor,
Regulator Power Switch J_ |_ Voltage Ref.
EN LCD Analog
J7 State Buffers
Core Voltage +
vDDOUT < Regulator Switch Array
+

VDDCORE
—————

Battery I

“h

VDDPLL

VDDIN_AFE VDDA Voltage Energy Metering
Regulator Analog-Front-End
VDDA

RTCOUTO (2)

WKUPx

FWUP (3)
State = 0 when main power is OFF

SHDN

Note 1: Internal LCD Voltage Regulator can be disabled to save its operating current. VDDLCD must then be provided externally.

2: RTCOUTO signal is used to make a dynamic wake-up. WKUPX pin is pulled-up with a low duty cycle to avoid battery discharge
by permanent activation of the switch.

3: The State output of the automatic power switch indicates to the device that the main power is back and forces its wake-up.

5154 Wake-up, Anti-tamper and RTCOUTO Pins

In all power supply figures shown above, if generic wake-up pins other than WKUPO/TMPO are used either as a wake-up or a fast startup
input, or as anti-tamper inputs, VDDIO must be present. This also applies to the RTCOUTO pin.

DS60001719B-page 18 © 2022 Microchip Technology Inc.

SAM4CM SERIES

5.1.55 General-purpose 10 (GPIO) State in Low-power Modes

In dual-power supply schemes shown in Figure 5-3 and Figure 5-4, where Backup or Wait mode must be used, configuration of the GPIO
lines is maintained in the same state as before entering Backup or Wait mode. Thus, to avoid extra current consumption on the VDDIO
power rail, the user must configure the GPIOs either as an input with pull-up or pull-down enabled, or as an output with low or high level
to comply with external components.

5.1.5.6 Default General-purpose 10s (GPIO) State after Reset

The reset state of the GPIO lines after reset is given in Table 11-5 “Multiplexing on PIO Controller A (PIOA)”, Table 11-6 “Multiplexing on
P1O Controller B (PIOB)” and Table 11-7 “Multiplexing on PIO Controller C (PIOC)”. For further details about the GPIO and system lines,
wake-up sources and wake-up time, and typical power consumption in different low-power modes, refer to Table 5-2 “Low-power Mode
Configuration Summary”.

5.2 Clock System Overview

Figure 5-5 illustrates the typical operation of the whole SAM4CM clock system in case of single crystal (32.768 kHz) applications. Note:

» The 32 kHz crystal oscillator can be the source clock of the 8 MHz digital PLL (PLLA).
» The 8 MHz clock can feed the high frequency PLL (PLLB) input.
» The output of the PLLB can be used as a main clock for both cores and the peripherals.

Full details of the clock system are provided in Section 29. “Clock Generator” and Section 30. “Power Management Controller (PMC)”.

© 2022 Microchip Technology Inc. DS60001719B-page 19

SAM4CM SERIES

Global Clock System

Figure 5-5

%00]0 Jolsey sng

don €

Jossa001do) SONEdD

300]0 Buluuny aai4 o
J0sseo0idoy K 10440

440/NO =¥ON8dD

30010 oI1SAS HAOS/H30S ONd

]

8/1epINg

J19]j01U0D
Juswebeuepy
Jamod

jo1uo) H sniels

selonuo) [

300|0 10558001 €————— 0D
!l_o_l— 10SS8001d

H H
H H
H H
H H
: Jossao0ido) MOILSASHO !
' H
H H
H apoyy deg) ' 2/ Jeping
B i —— PN RS MogTd | pue g11d
] A > H
H 3¥00|0 Josseo0ido) <« sejonuoy [%0010 811d) '
! MTOHdO 30010 S3HddO SS9d0 : :
! J10ssa001do) 440/NO =0d0 H '
' Ha0S/H3I0S OWd ' H
' MOW ' H
H ' H
H [g+w]ypydued w 91 01 | Aq apinip MOgTId MOVTld H
H 440/NO Jajeosald 30010 V11d 1 H
H PP Moviid . ! '
H H '
| - SONVIN H H
' sjesoyduad waishs (EDONONd) d H
B mewuoaoo sy} 1o} 18]101U0D) %00]0 JaISE o ' m
H X8pul Ue S| W 818U 1 H 101e[I19sO H
H [wiyo-ydued i : :
H 440/NO ! H le— H
e R R | : 10 H
' [eyshin :
... : ZHN 0Z€ |
h s '
i(weysAg %00[0 0d-ND) 0 8100 : : :
' B ! MONIVIAL & SO Od| |
: [g+ulio~ydued ' %010 4 01 1w H
: 440/NO ' uew ZHIN 2L/8lY H
H H ! pappaqu3 |
H H '
. [1+ulo™yduiad H : .
H 440/NO H H H
H siesoyduad wajshs H H 13SOSON H
H Jossaooud ay) Joj ! H J101.[19sQ !
' xepul ue st uaeym [uyo ydued = ' H [eiskig '
: 410N0 (804 OWd : zigosze |
H /Xd30dOWd) H | ye— H
' <==f--- J8||023U0D X201 . -
' s[elaydiiad H h '
H H
m %010 Jerse Sng H : :
: sosseoor €S [s3u] ! H H
: P : L O1S :
: %0010 Buuuny ea14 ey - [osmd 1 PO MoIS J01ey0s0 od| [
. losseoold TR CRAkA YovTd : O [« zmee |
H Jo[eosald ' H peppaquw3 | |
: %0010 Ho1LSAS A|_ 8/ 19png SONIVI | : :
' 10SS990. (MO OWd) 0 ' '
" dMolLSAS P y— o’ : :
' apoy deals ' ' &
H W ——> H ' H
H <& H : '
H H : :
.] ' '
] . ! L]
H H

Jojeuosay
olwele) Lnox

JojeiausH)00

System State at Power-up

5.3

Device Configuration after the First Power-up
At the first power-up, the SAM4CM boots from the ROM. The device configuration is defined by the SAM-BA boot program.

5.3.1

© 2022 Microchip Technology Inc.

DS60001719B-page 20

SAM4CM SERIES

5.3.2 Device Configuration after a Power Cycle when Booting from Flash Memory

After a power cycle of all the power supply rails, the system peripherals, such as the Flash Controller, the Clock Generator, the Power
Management Controller and the Supply Controller, are in the following states:

» Slow Clock (SLCK) source is the internal 32 kHz RC Oscillator (32 kHz crystal oscillator is disabled)

+ Main Clock (MAINCK) source is set to the 4 MHz internal RC Oscillator

» 3-20 MHz crystal oscillator and PLLs are disabled

» Core Brownout Detector and Core Reset are enabled

« Backup Power-on-reset is enabled

» VDDIO Supply Monitor is disabled

» Flash Wait State (FWS) bit in the EEFC Flash Mode Register is set to 0

* Core 0 Cache Controller (CMCCO) is enabled (only used if the application link address for the Core 0 is 0x11000000)
« Sub-system 1 is in the reset state and not clocked

5.3.3 Device Configuration after a Reset
After a reset or a wake-up from Backup mode, the following system peripherals default to the same state as after a power cycle:

» Main Clock (MAINCK) source is set to the 4 MHz internal RC oscillator

» 3-20 MHz crystal oscillator and PLLs are disabled

* Flash Wait State (FWS) bit in the EEFC Flash Mode Register is set to 0

» Core 0 Cache Controller (CMCCO) is enabled (only used if the application link address for the Core 0 is 0x11000000)
» Sub-system 1 is in the reset state and not clocked

The states of the other peripherals are saved in the backup area managed by the Supply Controller as long as VDDBU is maintained during
device reset:

» Slow Clock (SLCK) source selection is written in SUPC_ CR.XTALSEL.

» Core Brownout Detector enable/disable is written in SUPC_MR.BODDIS.

« Backup Power-on-reset enable/disable is written in the SUPC_MR.BUPPOREN.
* VDDIO Supply Monitor mode is written in the SUPC_SMMR.

54 Active Mode

Active mode is the normal running mode, with the single core or the dual cores executing code. The system clock can be the fast RC
oscillator, the main crystal oscillator or the PLLs. The Power Management Controller (PMC) can be used to adapt the frequency and to
disable the peripheral clocks when unused.

© 2022 Microchip Technology Inc. DS60001719B-page 21

SAM4CM SERIES

5.5 Low-power Modes

The various low-power modes (Backup, Wait and Sleep modes) of the SAM4CM are described below. Note that the Segmented LCD Con-
troller can be used in all low-power modes.

Note: The Wait For Event instruction (WFE) of the Cortex-M4 core can be used to enter any of the low-power modes, however this
may add complexity to the design of application state machines. This is due to the fact that the WFE instruction is associated
with an event flag of the Cortex core that cannot be managed by the software application. The event flag can be set by inter-
rupts, a debug event or an event signal from another processor. When an event occurs just before WFE execution, the pro-
cessor takes it into account and does not enter Low-power mode. Microchip has made provision to avoid using the WFE
instruction. The workarounds to ease application design, including the use of the WFE instruction, are given in the following
description of the low-power mode sequences.

5.5.1 Backup Mode

The purpose of Backup mode is to achieve the lowest possible power consumption in a system that executes periodic wake-ups to perform
tasks but which does not require fast start-up time. The total current consumption is 0.5 pA typical on VDDBU.

The Supply Controller, power-on reset, RTT, RTC, backup registers and the 32 kHz oscillator (RC or crystal oscillator selected by software
in the Supply Controller) are running. The regulator and the core supplies are off. The power-on-reset on VDDBU can be deactivated by
software.

Wake-up from Backup mode can be done through the Force Wake-up (FWUP) pin, WKUPO, WKUP1 to WKUP12 pins, the VDDIO Supply
Monitor (SM) if VDDIO is supplied, or through an RTT or RTC wake-up event. Wake-up pins multiplexed with anti-tampering functions are
additional possible sources of a wake-up if an anti-tampering event is detected. The TMPO pad is supplied by the backup power supply
(VDDBU). TMP1 is supplied by VDDIO.

The LCD Controller can be used in Backup mode. The purpose is to maintain the displayed message on the LCD display after entering
Backup mode. The current consumption on VDDIN to maintain the LCD is 10 pA typical. Refer to Section 46. “Electrical Characteristics”.

In case the VDDIO power supply is maintained with VDDBU when entering Backup mode, it is up to the application to configure all PIO
lines in a stable and known state to avoid extra power consumption or possible current path with the input/output lines of the external on-
board devices.

5.5.1.1 Entering and Exiting Backup Mode

To enter Backup mode, follow the steps in the sequence below:

1. Depending on the application, set the PIO lines in the correct mode and configuration (input pull-up or pull-down, output low or high
levels).

Disable the Main Crystal Oscillator (enabled by SAM-BA boot if the device is booting from ROM).

Configure PA30/PA31 (XIN/XOUT) into PIO mode depending on their use.

Disable the JTAG lines using the SFR1 register in Matrix 0 (by default, internal pull-up or pull-down is disabled on JTAG lines).
Enable the RTT in 1 Hz mode.

Disable Normal mode of the RTT (RTT will run in 1 Hz mode).

To reduce power consumption, disable the POR backup if not needed.

No ok

Note: The POR BU provides critical functionality to ensure the MCU backup logic will be properly reset in the event VDDBU drops
below the minimum specification. If this protection is not necessary, the backup POR may be disabled to reduce power con-
sumption.

8. Disable the Core brownout detector.

DS60001719B-page 22 © 2022 Microchip Technology Inc.

SAM4CM SERIES

9. Select one of the following methods to complete the sequence:
a. To enter Backup mode using the VROFF bit:
» Write a 1 to the VROFF bit of SUPC_CR.
b. To enter Backup mode using the WFE instruction:
» Write a 1 to the SLEEPDEEP bit of the Cortex-M4 processor.
» Execute the WFE instruction of the processor.

After this step, the core voltage regulator is shut down and the SHDN pin goes low. The digital internal logic (cores, peripherals and mem-
ories) is not powered. The LCD controller can be enabled if needed before entering Backup mode.

Whether the VROFF bit or the WFE instruction was used to enter Backup mode, the system exits Backup mode if one of the following
enabled wake-up events occurs:

+ WKUP[0-13] pins

* Force Wake-up pin

+ VDDIO Supply Monitor (if VDDIO is present, and VDDIO supply falling)

+ Anti-tamper event detection

* RTC alarm

* RTT alarm

After exiting Backup mode, the device is in the reset state. Only the configuration of the backup area peripherals remains unchanged.

Note that the device does not automatically enter Backup mode if VDDIN is disconnected, or if it falls below minimum voltage. The Shut-
down pin (SHDN) remains high in this case.

For current consumption in Backup mode, refer to Section 46. “Electrical Characteristics”.

5.5.2 Wait Mode

The purpose of Wait mode is to achieve very low power consumption while maintaining the whole device in a powered state for a start-up
time of a few ps. For current consumption in Wait mode, refer to Section 46. “Electrical Characteristics”.

In Wait mode, the bus and peripheral clocks of Sub-system 0 and Sub-system 1 (MCK/CPBMCK), the clocks of Core 0 and Core 1 (HCLK/
CPHCLK) are stopped when Wait mode is entered (refer to Section 5.5.2.1 “Entering and Exiting Wait Mode”). However, the power supply
of core, peripherals and memories are maintained using Standby mode of the core voltage regulator.

The SAM4CM is able to handle external and internal events in order to perform a wake-up. This is done by configuring the external WKUPx
lines as fast startup wake-up pins (refer to Section 5.7 “Fast Start-up”). RTC alarm, RTT alarm and anti-tamper events can also wake up
the device.

Wait mode can be used together with Flash in Read-Idle mode, Standby mode or Deep Power-down mode to further reduce the current
consumption. Flash in Read-ldle mode provides a faster start-up; Standby mode offers lower power consumption.

5.5.2.1 Entering and Exiting Wait Mode

1. Stop Sub-system 1.

Select the 4/8/12 MHz fast RC Oscillator as Main Clock(").
Disable the PLL if enabled.

Clear the internal wake-up sources.

Depending on the application, set the PIO lines in the correct mode and configuration (input pull-up or pull-down, output low or high
level).

Disable the Main Crystal Oscillator (enabled by SAM-BA boot if device is booting from ROM).

Configure PA30/PA31 (XIN/XOUT) into PIO mode according to their use.

Disable the JTAG lines using the SFR1 register in Matrix 0 (by default, internal pull-up or pull-down is disabled on JTAG lines).
Set the FLPM field in the PMC Fast Startup Mode Register (PMC_FSMR)2).

Set the Flash Wait State (FWS) bit in the EEFC Flash Mode Register to 0.

Select one of the following methods to complete the sequence:

ok 0NN

a0 NO

- O

© 2022 Microchip Technology Inc. DS60001719B-page 23

SAM4CM SERIES

a. To enter Wait mode using the WAITMODE bit:
» Set the WAITMODE bit to 1 in the PMC Main Oscillator Register (CKGR_MOR).
+ Wait for Master Clock Ready MCKRDY = 1 in the PMC Status Register (PMC_SR).
b. To enter Wait mode using the WFE instruction:
+ Select the 4/8/12 MHz fast RC Oscillator as Main Clock.
Set the FLPM field in the PMC Fast Startup Mode Register (PMC_FSMR).
Set Flash Wait State at 0.
Set the LPM bit in the PMC Fast Startup Mode Register (PMC_FSMR).
* Write a 0 to the SLEEPDEEP bit of the Cortex-M4 processor.
» Execute the Wait-For-Event (WFE) instruction of the processor.

Notes: 1. Any frequency can be chosen. The 12 MHz frequency will provide a faster start-up compared to the 4 MHz, but with the
increased current consumption (in the pA range). Refer to Section 46. “Electrical Characteristics”.
2. Depending on the Flash Low-power Mode (FLPM) value, the Flash enters three different modes:
- If FLPM = 0, the Flash enters Stand-by mode (Low consumption)
- If FLPM = 1, the Flash enters Deep Power-down mode (Extra low consumption)
- If FLPM = 2, the Flash enters Idle mode. Memory is ready for Read access

Whether the WAITMODE bit or the WFE instruction was used to enter Wait mode, the system exits Wait mode if one of the following
enabled wake-up events occurs:

* WKUP[0-13] pins in Fast wake-up mode
» Anti-tamper event detection

* RTC alarm

« RTT alarm

After exiting Wait mode, the P1O controller has the same configuration state as before entering Wait mode. The SAM4CM is clocked back
to the RC oscillator frequency which was used before entering Wait mode. The core will start fetching from Flash at this frequency. Depend-
ing on the configuration of the Flash Low-power Mode (FLPM) bits used to enter Wait mode, the application has to reconfigure it back to
Read-idle mode.

5.5.3 Sleep Mode

The purpose of Sleep mode is to optimize power consumption of the device versus response time. In this mode, only the core clocks of
CM4P0 and/or CM4P1 are stopped. Some of the peripheral clocks can be enabled depending on the application needs. The current con-
sumption in this mode is application dependent. This mode is entered using Wait for Interrupt (WFI) or Wait for Event (WFE) instructions
of the Cortex-M4.

The processor can be awakened from an interrupt if the WFI instruction of the Cortex-M4 is used to enter Sleep mode, or from a wake-up
event if the WFE instruction is used. The WFI instruction can also be used to enter Sleep mode with the SLEEPONEXIT bit set to 1 in the
System Control Register (SCB_SCR) of the Cortex-M. If the SLEEPONEXIT bit of the SCB_SCRis set to 1, when the processor completes
the execution of an exception handler, it returns to Thread mode and immediately enters Sleep mode. This mechanism can be used in
applications that require the processor to run only when an exception occurs. Setting the SLEEPONEXIT bit to 1 enables an interrupt-
driven application in order to avoid returning to an empty main application.

DS60001719B-page 24 © 2022 Microchip Technology Inc.

SAM4CM SERIES

5.5.4

Low-power Mode Summary Table

The modes detailed above are the main low-power modes. Table 5-2 below provides a configuration summary of the low-power modes.
For more information on power consumption, refer to Section 46. “Electrical Characteristics”.

Table 5-2: Low-power Mode Configuration Summary
SUPC,
32 kHz
Oscillator
RTC, RTT c
Backup R o:'e
Registers egulator
POR / Core 0/1 Core PIO State PIO State Typical
(Backup LCD Memory Potential at in Low- at Wake-up
Mode Region) Regulator Peripherals Wake-up Sources Wake-up |power Mode | Wake-up Time(!
- FWUP pin
OFF | OFF - WKUP0-13 pins(®
Backup ON OFF/OFF - Supply Monitor Reset Previous state | pocetstate” | <1.5ms
Mode (Not powered) . ‘ 5 saved
- Anti-tamper |nputs()
- RTC or RTT alarm
- FWUP pin
- WKUP0-13 pins(® Unchanged
Backup OFF / OFF i i
Mode with ON OFF/ON - Supply Monitor Reset PreV'OUSdState (LCD les)/ <15ms
LCD (Not powered))] 5) save! Inputs with pull
- Anti-tamper inputs ups
-RTC or RTT alarm
Wait Mode Core 0 and 1, Any event from:
memories and - Fast start-up through
Flash in ON ON/@) peripherals: WKUPO-13 pins Clocked back Prevslgt\j:(jstate Unchanged <10 us
Standby Powered, but Not |- Anti-tamper inputs(®)
6
Mode(® clocked -RTC or RTT alarm
Wait Mode .
Core 0 and 1, Any event from:
; memories and - Fast start-up through
Flashin ON oN/4) |peripherals: WKUPO0-13 pins Clocked back| Previous State | ynopangeq | <75
Deep . - pi OCKe! acl saved nchange: MS
Power- Powered, but Not |- Anti-tamper inputs(®)
down clocked - RTC or RTT alarm
Mode(®
Entry mode = WFI
Any enabled Interrupts;
ggz (1).and/or Entry mode = WFE
Sleep Mode ON oN/@) Powered Any enabled event: Clocked back Prevslgl\j:‘;tate Unchanged @)
(Not clocked)(2) - Fast start-up through

WKUPO0-13 pins
- Anti-tamper inputs®
-RTC or RTT alarm

Note 1:

When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the device works
from the 4, 8 or 12 MHz fast RC oscillator. The user has to add the PLL start-up time if it is needed in the system. The wake-
up time is defined as the time taken for wake-up until the first instruction is fetched.

In this mode, the core is supplied and not clocked but some peripherals can be clocked.

Depends on MCK frequency.

LCD voltage regulator can be OFF if VDDLCD is supplied externally thus saving current consumption of the LCD voltage reg-

ulator.

© 2022 Microchip Technology Inc.

DS60001719B-page 25

SAM4CM SERIES

5: Refer to Table 3-1 “Signal Description List”. Some anti-tamper pin pads are VDDIO-powered.
6: Fast RC Oscillator set to 4 MHz frequency.
7: Refer to PIO Controller Multiplexing tables in Section 11.4 “Peripheral Signal Multiplexing on I/O Lines”.

5.6 Wake-up Sources

Wake-up events allow the device to exit Backup mode. When a wake-up event is detected, the Supply Controller performs a sequence
which automatically reenables the core power supply and all digital logic.

5.7 Fast Start-up

The SAM4CM allows the processor to restart in a few microseconds while the processor is in Wait mode or in Sleep mode. A fast start-up
occurs upon detection of one of the wake-up inputs.

The fast restart circuitry is fully asynchronous and provides a fast start-up signal to the Power Management Controller. As soon as the fast
start-up signal is asserted, the PMC automatically restarts the embedded 4/8/12 MHz Fast RC oscillator, switches the master clock on this
4 MHz clock and re-enables the processor clock.

6. Input/Output Lines

The SAM4CM has two types of input/output (I/O) lines—general-purpose 1/0Os (GPIO) and system 1/0Os. GPIOs have alternate functionality
due to multiplexing capabilities of the PIO controllers. The same PIO line can be used whether in I/O mode or by the multiplexed peripheral.
System 1/Os include pins such as test pins, oscillators, erase or analog inputs.

6.1 General-Purpose I/O Lines

General-purpose 1/O (GPIO) lines are managed by PIO Controllers. All I/Os have several input or output modes such as pull-up or pull-
down, input Schmitt triggers, multi-drive (open-drain), glitch filters, debouncing or input change interrupt. Programming of these modes is
performed independently for each 1/O line through the PIO controller user interface. Refer to Section 32. “Parallel Input/Output Controller
(PIO)” for details.

The input/output buffers of the PIO lines are supplied through VDDIO power supply rail when used as GPIOs. When used as extra func-
tions such as LCD or Analog modes, GPIO lines have either VDDLCD or VDDIN voltage range.

Each I/O line embeds an ODT (On-die Termination), shown in Figure 6-1 below. ODT consists of an internal series resistor termination
scheme for impedance matching between the driver output (SAM4CM) and the PCB trace impedance preventing signal reflection. The
series resistor helps to reduce 10s switching current (di/dt) thereby reducing EMI. It also decreases overshoot and undershoot (ringing)
due to inductance of interconnect between devices or between boards. Finally, ODT helps diminish signal integrity issues.

Receiver
SAM4 Driver with
Zout ~ 10 Ohms

PCB Trace
Z0 ~ 50 Ohms

Figure 6-1: On-die Termination
[TTTTmTTsssssssssoss--------o 70~ Zout + Rodt
| oDT |
! 36 Ohms Typ. !

6.2 System I/O Lines

System 1/O lines are pins used by oscillators, test mode, reset and JTAG and other features.

Table 6-1 describes the system 1/O lines shared with PIO lines. These pins are software-configurable as general-purpose 1/O or system
pins. At start-up, the default function of these pins is always used.

Note 1: If PC9is used as PIO input in user applications, a low level must be ensured at start-up to prevent Flash erase before the user
application sets PC9 into PIO mode.

2: Refer to Section 29.5.3 “3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator”.

DS60001719B-page 26 © 2022 Microchip Technology Inc.

SAM4CM SERIES

Table 6-1: System 1/O Configuration Pin List

SYSTEM_IO Default Function Constraints

Bit Number after Reset Other Function for Normal Start Configuration
0 TDI PBO -
1 TDO/TRACESWO PB1 - In Matrix User Interface Registers
2 TMS/SWDIO PB2 - (Refer to Section 26.9.4 “System 1/0O
3 TCK/SWCLK PB3 — Configuration Register”)
4 ERASE PC9 Low level at Start-up(")
- PA31 XIN - @)
- PA30 XOuT -

6.2.1 Serial Wire JTAG Debug Port (SWJ-DP) and Serial Wire Debug Port (SW-DP) Pins

The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/TRACESWO, TDI and commonly provided on a standard 20-pin JTAG connector
defined by ARM. For more details about voltage reference and reset state, refer to Table 11-6 “Multiplexing on PIO Controller B (PIOB)".

At start-up, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging probe. Refer to Section 13. “Debug and
Test Features”.

SWJ-DP pins can be used as standard 1/Os to provide users with more general input/output pins when the debug port is not needed in the
end application. Mode selection between SWJ-DP mode (System 10 mode) and general IO mode is performed through the AHB Matrix
Special Function Registers (MATRIX_SFR). Configuration of the pad for pull-up, triggers, debouncing and glitch filters is possible regard-
less of the mode.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It integrates a permanent pull-down resistor
of about 15 kOhm to GND, so that it can be left unconnected for normal operations.

By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial Wire Debug Port, it must provide a dedicated
JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables the JTAG-DP and enables the SW-DP. When the Serial Wire Debug
Port is active, TDO/TRACESWO can be used for trace.

The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous trace can only be used with SW-DP, not
JTAG-DP. For more information about SW-DP and JTAG-DP switching, refer to Section 13. “Debug and Test Features”. The SW-DP/SWJ-
DP pins are used for debug access to both cores.

6.3 TST Pin

The TST pin is used for JTAG Boundary Scan Manufacturing Test or Fast Flash programming mode of the SAM4CM series. For details
on entering Fast Programming mode, refer to Section 23. “Fast Flash Programming Interface (FFPI)". For more information on the man-
ufacturing and test modes, refer to Section 13. “Debug and Test Features”.

6.4 NRST Pin

The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low to provide a reset signal to the external
components, or asserted low externally to reset the microcontroller. It resets the core and the peripherals, with the exception of the Backup
region (RTC, RTT and Supply Controller). There is no constraint on the length of the reset pulse, and the Reset Controller can guarantee
a minimum pulse length. The NRST pin integrates a permanent pull-up resistor to VDDIO of about 100 kOhm. By default, the NRST pin
is configured as an input.

6.5 TMPx Pins: Anti-tamper Pins

Anti-tamper pins detect intrusion—for example, into a smart meter case. Upon detection through a tamper switch, automatic, asynchro-
nous and immediate clear of registers in the backup area, and time stamping in the RTC are performed. Anti-tamper pins can be used in
all modes. Date and number of tampering events are stored automatically. Anti-tampering events can be programmed so that half of the
General-purpose Backup Registers (GPBR) are erased automatically. The TMP1 signal is referred to VDDIO, meaning that it is effective
only if VDDIO is supplied, whereas TMPO is in the VDDBU domain.

© 2022 Microchip Technology Inc. DS60001719B-page 27

SAM4CM SERIES

6.6 RTCOUTO Pin

The RTCOUTO pin shared in the PIO (supplied by VDDIO) can be used to generate waveforms from the RTC in order to take advantage
of the RTC inherent prescalers while the RTC is the only powered circuitry (Low-power mode, Backup mode) or in any active mode. Enter-
ing Backup or low-power operating modes does not affect the waveform generation outputs (VDDIO still must be supplied). Anti-tampering
pin detection can be synchronized with this signal.

Note: To use the RTCOUTO signal during application development using JTAG-ICE interface, the programmer must use Serial Wire
Debug (SWD) mode. In this case, the TDO pin is not used as a JTAG signal by the ICE interface.

6.7 Shutdown (SHDN) Pin

The SHDN pin designates the Backup mode of operation. When the device is in Backup mode, SHDN = 0. In any other mode, SHDN = 1
(VDDBU). This pin is designed to control the enable pin of the main external voltage regulator. When the device enters Backup mode, the
SHDN pin disables the external voltage regulator and, upon the wake-up event, it re-enables the voltage regulator.

The SHDN pin is asserted low when the VROFF bit in the Supply Controller Control Register (SUPC_CR) is set to 1.

6.8 Force Wake-up (FWUP) Pin

The FWUP pin can be used as a wake-up source in all low-power modes as it is supplied by VDDBU.

6.9 ERASE Pin

The ERASE pin is used to reinitialize the Flash content (and some of its NVM bits) to an erased state (all bits read as logic level 1). The
ERASE pin and the ROM code ensure an in-situ reprogrammability of the Flash content without the use of a debug tool. When the security
bit is activated, the ERASE pin provides the capability to reprogram the Flash content. The ERASE pin integrates a pull-down resistor of
about 100 kOhm into GND, so that it can be left unconnected for normal operations.

This pin is debounced by SLCK to improve the glitch tolerance. When the ERASE pin is tied high during less than 100 ms, it is not taken
into account. The pin must be tied high during more than 220 ms to perform a Flash erase operation.

The ERASE pin is a system I/O pin and can be used as a standard 1/0O. At start-up, the ERASE pin is not configured as a PIO pin. If the
ERASE pin is used as a standard 1/O, the start-up level of this pin must be low to prevent unwanted erasing. Refer to Section 11.3 “APB/
AHB Bridge”. If the ERASE pin is used as a standard 1/O output, asserting the pin to low does not erase the Flash.

To avoid unexpected erase at power-up, a minimum ERASE pin assertion time is required. This time is defined in the AC Flash Charac-
teristics in Section “Electrical Characteristics”.

The erase operation is not performed when the system is in Wait mode with the Flash in Deep Power-down mode.

To make sure that the erase operation is performed after power-up, the system must not reconfigure the ERASE pin as GPIO or enter Wait
mode with Flash in Deep Power-down mode before the ERASE pin assertion time has elapsed.

With the following sequence, in any case, the erase operation is performed:

1. Assert the ERASE pin (High).

2. Assert the NRST pin (Low).

3. Power cycle the device.

4. Maintain the ERASE pin high for at least the minimum assertion time.

7. Product Mapping and Peripheral Access
Figure 7-1 shows the default memory mapping of the ARM Cortex-M core.

DS60001719B-page 28 © 2022 Microchip Technology Inc.

SAM4CM SERIES

Figure 7-1:

OXFFFFFFFF

0xE0000000
OXDFFFFFFF

0xA0000000
OX9FFFFFFF

0x60000000
OX5FFFFFFF
0x40000000
Ox3FFFFFFF
0x20000000
Ox1FFFFFFF
0x00000000

Cortex-M Memory Mapping

System level

External device

External RAM

Peripherals

SRAM

CODE

Private peripherals including
build-in interrupt controller
(NVIC), MPU control
registers, and debug
components

Mainly used as external
peripherals

Mainly used as external
memory

Mainly used as peripherals

Mainly used as static RAM

Mainly used for program
code. Also provides exception
vector table after power up

© 2022 Microchip Technology Inc.

DS60001719B-page 29

Note 1:

SAM4CM SERIES

Figure 7-2: SAM4CM16/8/4 Memory Mapping of CODE and SRAM Area
Address memory space
0x00000000 N
Code
0x20000000 .
| | SRAM _."" Internal SRAM ' Code
0x20000000 nierna . | 0x00000000
Y Boot Memory (1)
SRAMO 0x40000000, \ (Code - Non-cached)
0x20080000 K ' 0x01000000
K Perioheral \ Internal Flash
SRAM1 (2) K eripherals | (Code - Non-cached)
0%20100000 K L 0x02000000
SRAM2 0x60000000 : Internal ROM
0%20180000 ; \ 0x03000000
N S EBI Chip Select 0
CPKCC ROM K External SRAM . (Code - Non-cached)
0x20190000 /; Y 0x04000000
. Y EBI Chip Select 1
Reserved oleooooooo \ (Code - Non-cached)
0%20191000 J, © 0x05000000
K . 5 EBI Chip Select 2
CPKCC SRAM g External devices ' 0406000000 (Code - Non-cached)
20192 ‘ toOx -
0x20152000 : \ EBI Chip Select 3
Reserved /. 0xE0000000 Y (Code - Non-cached)
0%20200000 3 1 0x07000000
Undefined (Abort) | pri tClgrtelxr-’M B L Undefined (Abort)
Ox3FFFFFFF ! rivate Feripheral Bus 0x10000000
0xE0100000 \ Undefined (Abort)
011000000
R d \ Internal Flash
eserve \ (Code - Cached)
offset 0x12000000
bl Ckperipheral OXFFFFFFEF \ Undefined (Abort)
ID 0x13D00000
Y EBI Chip Select 0
H (Code - Cached)
0x14000000
5 EBI Chip Select 1
\ (Code - Cached)
0x15000,000
B EBI Chip Select 2
Y (Code - Cached)
0x160000:00
\ EBI Chip Select 3
5 (Code - Cached)
0x17000009
\ Undefined (Abort)
0x1FFFFFFF
Boot Memory for Core 0.
2: Boot Memory for Core 1 at 0x00000000.

DS60001719B-page 30

© 2022 Microchip Technology Inc.

Figure 7-3:

SAM4CM32 Memory Mapping of CODE and SRAM Area

SAM4CM SERIES

Address memory space
0x00000000 .
Code Tl
0x20000000 el Code
JPtaas . 0x00000000
LT ' Boot Memory (1)
Internal SRAM .-+ Internal SRAM (Code - Non-cached)
0x20000000 - ' 0x01000000
' Internal Flash - Plane 0
SRAMO OX4OOOOOOO, \ (Code - Non-cached)
0x%20080000 K v 0x01100000
. i 5 Internal Flash - Plane 1
SRAM1 (2) g Peripherals Y (Code - Non-cached)
0x20100000 ; Y 0x02000000
SRAM2 0x60000000 B Internal ROM
0%20180000 /; 0x03000000
CPKCC ROM S External SRAM B EBI Chip Select 0
' v (Code - Non-cached)
0x20190000 ; Y 0x04000000
" Y EBI Chip Select 1
Reserved 0xA0000000 . (Code - Non-cached)
0%20191000 K . 0x05000000
K) 5 EBI Chip Select 2
CPKCC SRAM ; External devices | 0000000 (Code - Non-cached)
0x20192000 g vo0x -
* ; ! EBI Chip Select 3
Reserved ;. 0xE0000000 B (Code - Non-cached)
0x20200000 ,0x07000000
Undefined (Abort) | / orivat Cg”‘?xr']"" B | Undefined (Abort)
0x3FFFFFFF rivaie Feripheral Bus 0x10000000
0xE0100000 \ Undefined (Abort)
011000000
R J Y Internal Flash
eserve 5 (Code - Cached)
offset 0x12000000
Lok eripheral OXFFFFFFFE \ Undefined (Abort)
D 0x13900000
B EBI Chip Select 0
' (Code - Cached)
0x14060000
5 EBI Chip Select 1
\ (Code - Cached)
0x15000,000
Y EBI Chip Select 2
N (Code - Cached)
0x160000:00
Y EBI Chip Select 3
5 (Code - Cached)
0x17000009
\ Undefined (Abort)
0x1FFFFFFF
Note 1: Boot Memory for Core 0.
2: Boot Memory for Core 1 at 0x00000000.

© 2022 Microchip Technology Inc.

DS60001719B-page 31

SAM4CM SERIES

In Figure 7-2 and Figure 7-3 above, ‘Code’ means ‘Program Code over |-Code bus’ and ‘Program Data over D-Code bus’.

SRAM1 is at the address 0x20080000 (through S-bus) and the address 0x00000000 (through I/D Bus) for Core1. Instruction fetch from
Core 1 to the SRAM address range is possible but leads to reduced performance due to the fact that instructions and read/write data go
through the System Bus (S-Bus). Maximum performance for Core 1 (Metrology Core) is obtained by mapping the instruction code to the
address 0x00000000 (SRAM1 through I/D-Code) and read/write data from the address 0x20100000 (SRAM2 through S-Bus).

For Core 0 (Application Core), maximum performance is achieved when the instruction code is mapped to the Flash address and read/
write data is mapped into SRAMO.

Each core can access the following memories and peripherals:

» Core 0 (Application Core):
- All internal memories
- External memories or memory devices mapped on SMC 0 or SMC 1
- All internal peripherals
» Core 1 (Metrology/Coprocessor Core):
- All internal memories
- External memories or memory devices mapped on SMC 0 or SMC 1
- Allinternal peripherals
Note that Peripheral DMA 0 on Matrix 0 cannot access SRAM1 or SRAM2, Peripheral DMA 1 on Matrix 1 cannot access SRAM0, SRAM2
or SRAMO can be the Data RAM for Inter-core Communication.

If Core 1 is not to be used (clock stopped and reset active), all the peripherals, SRAM1 and SRAM2 of the Sub-system 1 can be used by
the Application Core (Core 0) as long as the peripheral bus clock and reset are configured.

Refer to Section 26. “Bus Matrix (MATRIX)” for more details about memory mapping and memory access versus Matrix masters/slaves.

DS60001719B-page 32 © 2022 Microchip Technology Inc.

SAM4CM SERIES

Figure 7-4: SAM4CM16/8/4 Memory Mapping of the Peripherals Area
Address memory space .
000000000 0x4000000f Peripherals 0x40080000 St Controller
AES SMco
Code _.-~0%40004000}—— 36 0x400E0200| 10
Pt Reserved MATRIX0
0%20000000 040008000 0x400E040D
SPIO B PMC
Internal SRAM Pt 0x4000C000 21 0x400E0680 2
PPt . Reserved ! UARTO
0x40000000 . 0x40010000 0x400E0740 8
€0 160 ; CHIPID
Peripherals +0x40 23 Ox4OOEO.4'BOO
o TCt1 N Reserved
0x60000000 +0x80 24 0x400E¢A00
] R ! EFC
External SRAM |1 0x40014000 25 0x400E0C00 6
B et TC3 N Reserved
0xA0000000 . +0x40 26 0x400£0E00
Tl 104 ' PIOA
External devices | | +0x80 27 Ox40q'E1000 11
: Tl 105 : PIOB
0xE0000000 | 0x40018000 28 0x400E1200 12
Cortex-M I" TWIO "' Reserved
Private H 0x4001C000 19 0x4¢0E1400
Peripheral Bus H TWH N SYsc RSTC
0xE0100000 ' 0%40020000 20 | +0x10
N ' SYSC
B Reserved ! SUPC
Reserved H 0x40024000 ! +0x30
. USARTO . SYSC Rrr
OXFFFFFFFF 0%40028000 14 T +0x50 g 3
' USART1 ' WDT
. 0%4002C000 15 ! +0x60 4
H USART2 H SYSC mre
: 0x40030000 16 f 40x90 2
: USARTS3 : SYSC GpeR
\ 040034000 17 10%400E1600
|'. Reserved '-' reserved
' 0%40038000 ' 0x400E4000
' ADC '
H 0%4003C000 29 ' !
steoc
! 0x40040000 ' g
H CPKCC h N
0x4800%4000 <«--= 0%x40044000 35 ! N
H UART1 : oM ! .
0x4aooélooo 38 . 0%40048000 34 ,: J
| PWM ' TRNG . .
OX4800C’?°0 i ' 0x4004C000 33 ,' ;
! PIOC . E IPCO H S
0x48010000 : 0x40050000 ER I ,"
.| MATRIX1 : Reserved -
0X480140'?0 . 0%4007C000 ,' I
' IPC1 : CMCCO Lo
0x48018000 = . 0x40080000 .
.| cmcct : Reserved S
0X4801C00‘9 . 0x400E0000] ,"
1| smct ' System Controller | .
0x48020000 = . 0x400E4000 !
\| Reserved ! Reserved
.
R 0%48000000 —
L - 0x48004000

© 2022 Microchip Technology Inc. DS60001719B-page 33

SAM4CM SERIES

Figure 7-5:

SAM4CM32 Memory Mapping of the Peripherals Area

Address memory space

0x00000000

0x20000000

0x40000000

0x60000000

0xA0000000

0xE0000000

0xE0100000

OxFFFFFFFF

Code

Internal SRAM

Peripherals

External SRAM

External devices

Cortex-M
Private
Peripheral Bus

Reserved

g
i
'
[
]
[
[
'
]
1
[
]
[
[
]
[
[
]
[
[
'
]
[
[
]
[
[l
]
[
[
]
]
[
1
]
[
[l
]
[
[
1
1
[
1
]
'
[
]
[
[
]
[
1
]
[
[
[l
'
[

[

]

[

.
0x48004000
.
.

'
0x4800§000

0x4800C000
b

0x48010400

0x48014000
'

.
0x480180Q0

0x4801C000
'
\

'
0x4802000€

OxSFFFFFFF

UART1
38
PWM
41
PIOC
37
MATRIX1
IPC1
39
CMCCH
SMC1
43
Reserved

-
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
8

0x40000000
__‘ﬁiihgo4ooo
0x40008000
0x4000C000
0x40010000
+0x40
+0x80
0x40014000
+0x40
+0x80
0x40018000
0x4001C000
0x40020000
0x40024000
0x40028000
0x4002C000
0x40030000
0x40034000
0x40038000
0x4003C000
0x40040000
0x40044000
0x40048000
0x4004C000
0x40050000
0x4007C000
0x40080000
0x400E0000
0x400E4000

0x48000000

===0x48004000

Peripherals
AES
36
Reserved
SPIO
21
Reserved
0 10
23
€0 104
24
0 1e2
25
TC1
TC3
26
T 104
27
1 105
28
TWIO
19
TWH
20
Reserved
USARTO
14
USART1
15
USART2
16
USART3
17
Reserved
ADC
29
SLCDC
32
CPKCC
35
ICM
34
TRNG
33
IPCO
31
Reserved
CcMcco
Reserved
System Controller
Reserved
Reserved

System Controller

0x400E0000
SMCO
Ox4OOE0204 10
! MATRIX0
0x400E040D
h PMC
0x400E06§o E)
! UARTO
0x400E0740 8
H CHIPID
0x400Eo§oo
K Reserved
0x400E¢A00
H EFCO
0x40080C00 3
! EFCA
0x400E0E00 7
H PIOA
040081000 11
! PIOB
0x40DE1200 12
N Reserved
0x4§osl4oo
: SYSC et
: +0x10 1
! SY5¢ supc
i +0x30[——
! RTT
! 4050 3
; SYSC e
! 4
HERCE] e
! RTC
I +0x90 2
! SY5€ GpeR
;Ox4OOEl6OO
N reserved
{ 0x400E4000)
'

]
'
]
]

'

' D
'

]

'
] '
'

] .
'

il
'
1
N .
'
'

DS60001719B-page 34

© 2022 Microchip Technology Inc.

SAM4CM SERIES

Figure 7-6:

0xA0000000
0xA1000000
0xA2000000
0xA3000000

0xA4000000

OxDFFFFFFF

offset

SAM4CM32/16/8/4 Memory Mapping of External SRAM and External Devices Area

External devices

EBI Chip Select 0
(External Device)

EBI Chip Select 1
(External Device)

EBI Chip Select 2
(External Device)

EBI Chip Select 3
(External Device)

Undefined (Abort)

block .
peripheral

ID

0x00000000

0x20000000

S 0x40000000

Address memory space

Code

Internal SRAM

Peripherals

External SRAM

External devices

0xE0100000

OXFFFFFFFF

Cortex-M
Private Peripheral Bus

Reserved

0x60000000

0x61000000

.
’

0x62000000

,< 0x63000000
0x64000000

O0x9FFFFFFE.

External SRAM

EBI Chip Select 0

EBI Chip Select 1

EBI Chip Select 2

EBI Chip Select 3

Undefined (Abort)

© 2022 Microchip Technology Inc.

DS60001719B-page 35

SAM4CM SERIES

8. Memories
The memory map shown in Figure 7-2 is common to both Cortex-M4 processors with the exception of the “Boot Memory” block. For more
information on Boot Memory, refer to Section 8.1.5 “Boot Strategy”.

Each processor uses its own ARM Private Peripheral Bus (PPB) for the NVIC and other system functions.

8.1 Embedded Memories

8.1.1 Internal SRAM
The SAM4CM embeds a total of up to 304 Kbytes high-speed SRAM with zero wait state access time.

SRAMO on Matrix0 is up to 256 Kbytes. It is dedicated to the application processor (CM4PQ) or other peripherals on Matrix0 but can be
identified and used by masters on Matrix1.

SRAM1 on Matrix1 is up to 32 Kbytes. It is mainly dedicated to be the code region of the CM4P1 processor but can be identified and used
by Matrix0.

SRAM2 on Matrix1 is up to 16 Kbytes. It is mainly dedicated to be the data region of the CM4P1 processor or other peripherals on Matrix1
but can be identified and used by masters on Matrix0.

Refer to Section 26. “Bus Matrix (MATRIX)” for more details.
If the CM4P1 processor is in the reset state and not used, the application core may use it.
The SRAM is located in the bit band region. The bit band alias region is from 0x2200 0000 to 0x23FF_FFFF.

8.1.2 System ROM

The SAM4CM embeds an Internal ROM for the master processor (CM4P0), which contains the SAM Boot Assistant (SAM-BA®), In Appli-
cation Programming routines (IAP), and Fast Flash Programming Interface (FFPI).

The ROM is always mapped at the address 0x02000000.

8.1.3 CPKCC ROM

The ROM contains a cryptographic library using the CPKCC cryptographic accelerator peripheral (CPKCC) to provide support for Rivest
Shamir Adleman (RSA), Elliptic Curve Cryptography (ECC), Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algo-
rithm (ECDSA).

8.1.4 Embedded Flash

8.1.4.1 Flash Overview

The embedded Flash is the boot memory for the Cortex-M4 Core 0 (CM4P0). The Flash memory can be accessed through the Cache
Memory Controller (CMCCOQ) of the CM4P0 and can also be identified by the Cortex-M4F Core 1 (CM4P1) through its Cache Memory
Controller (CMCCA1).

The SAM4CM32 features a dual-plane Flash to program or erase a memory plane while reading from the other plane. The dual-plane
capability also provides the dual boot scheme. The benefit of the dual plane and the dual boot is that the firmware can be upgraded while
the main application is running and that it is possible to switch to the new firmware in the other plane. Figure 8-1 below shows the operating
principle of firmware upgrade by using the dual bank/dual boot.

DS60001719B-page 36 © 2022 Microchip Technology Inc.

SAM4CM SERIES

Figure 8-1: Dual Bank and Dual Boot Firmware Upgrade

RESET VECTOR RESET VECTOR

Bank 2

Wired / Wireless Stream
corru pt RESET VECTOR
Normal operation from Bank 1 Power or comms failure cause Reprogramming
while simultaneously remotely Bank 2 program fail while Bank successful, device now
programming Bank 2 1 continues to operate and executes from Bank 2,Bank
requests retransmission 1 available for next update

The memory plane is organized in sectors. Each sector has a size of 64 Kbytes. The first sector of 64 Kbytes is divided into 3 smaller
sectors.

The three smaller sectors are organized in 2 sectors of 8 Kbytes and 1 sector of 48 Kbytes. Refer to Figure 8-2 below.
The Flash memory has built-in error code correction providing 2-bit error detection and 1-bit correction per 128 bits.

Figure 8-2: Memory Plane Organization
Sector size Sector name
8 Kbytes Small Sector 0
8 Kbytes Small Sector 1 Sector 0
48 Kbytes Larger Sector
64 Kbytes Sector 1
64 KbyteS Sector n

© 2022 Microchip Technology Inc. DS60001719B-page 37

SAM4CM SERIES

Each sector is organized in pages of 512 bytes.

For sector 0O:

» The small sector 0 has 16 pages of 512 bytes, 8 Kbytes in total
» The small sector 1 has 16 pages of 512 bytes, 8 Kbytes in total
* The larger sector has 96 pages of 512 bytes, 48 Kbytes in total

From sector 1 to n:
The rest of the array is composed of 64-Kbyte sectors where each sector comprises 128 pages of 512 bytes. Refer to Figure 8-3 below.

A sector size is 64 Kbytes

16 pages of 512 bytes

16 pages of 512 bytes

96 pages of 512 bytes

128 pages of 512 bytes

Figure 8-3: Flash Sector Organization
Sector 0
Sectorn
Table 8-1: SAMA4CM Flash Size
Device Flash (Kbytes)
SAM4CM4 256
SAM4CM8 512
SAM4CM16 1024
SAM4CM32 2048 (2 x 1024)

Small sector 0
Small sector 1

Larger sector

DS60001719B-page 38

© 2022 Microchip Technology Inc.

SAM4CM SERIES

Figure 8-4 illustrates the organization of the Flash depending on its size.

Figure 8-4: Flash Size
Flash 2 Mbytes Flash 1 Mbyte Flash 512 Kbytes Flash 256 Kbytes
2 * 8 Kbytes 2 * 8 Kbytes 2 * 8 Kbytes 2 * 8 Kbytes
1 * 48 Kbytes 1 * 48 Kbytes 1 * 48 Kbytes 1 * 48 Kbytes
Plane 0
15 * 64 Kbytes 15764 Kbytes 7 64 Kbytes 3" 64 Kbytes
2 * 8 Kbytes
1 * 48 Kbytes
Plane 1
15 * 64 Kbytes

The following erase commands can be used depending on the sector size:

+ 8-Kbyte small sector

Erase and write page (EWP)
Erase and write page and lock (EWPL)
Erase sector (ES) with FARG set to a page number in the sector to erase

Erase pages (EPA) with FARG [1:0] = 0 to erase four pages or FARG [1:0] = 1 to erase eight pages.

FARG [1:0] = 2 and FARG [1:0] = 3 must not be used.

+ 48-Kbyte and 64-Kbyte sectors
- One block of 8 pages inside any sector, with the command Erase pages (EPA) with FARG[1:0] = 1
- One block of 16 pages inside any sector, with the command Erase pages (EPA) and FARG[1:0] = 2
- One block of 32 pages inside any sector, with the command Erase pages (EPA) and FARG[1:0] = 3
- One sector with the command Erase sector (ES) and FARG set to a page number in the sector to erase
+ Entire memory plane
- The entire Flash, with the command Erase all (EA)

8.1.4.2 Enhanced Embedded Flash Controller

The Enhanced Embedded Flash Controller manages accesses performed by masters of the system. It enables reading the Flash and
writing the write buffer. It also contains a User Interface, mapped on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block. It manages the programming, erasing, locking and
unlocking sequences of the Flash using the full set of commands.

One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash organization, thus making
the software generic.

© 2022 Microchip Technology Inc.

DS60001719B-page 39

SAM4CM SERIES

8.1.43 Flash Speed
The user must set the number of wait states depending on the frequency used on the SAM4CM.
For more details, refer to Section 46.6 “Embedded Flash Characteristics”.

8.14.4 Lock Regions

Several lock bits are used to protect write and erase operations on lock regions. A lock region is composed of several consecutive pages,
and each lock region has its associated lock bit.

Table 8-2: Lock Bit Number
Product Number of Lock Bits Lock Region Size
SAM4CM32 256 (128 + 128) 8 Kbytes
SAM4CM16 128 8 Kbytes
SAM4CM8 64 8 Kbytes
SAM4CM4 32 8 Kbytes

The lock bits are software programmable through the EEFC User Interface. The command “Set Lock Bit” enables the protection. The com-
mand “Clear Lock Bit” unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

8.1.4.5 Security Bit

The SAM4CM features a security bit based on a specific General-purpose NVM bit (GPNVM bit 0). When the security is enabled, any
access to the Flash, SRAM, core registers and internal peripherals, either through the SW-DP/JTAG-DP interface or through the Fast
Flash Programming Interface, is forbidden. This ensures the confidentiality of the code programmed in the Flash.

This security bit can only be enabled through the command “Set General-purpose NVM Bit 0” of the EEFC User Interface. Disabling the
security bit can only be achieved by asserting the ERASE pin at 1, and after a full Flash erase is performed. When the security bit is deac-
tivated, all accesses to the Flash, SRAM, Core registers, Internal Peripherals are permitted.

8.1.4.6 Unique Identifier

Each device integrates its own 128-bit unique identifier. These bits are factory-configured and cannot be changed by the user. The ERASE
pin has no effect on the unique identifier.

8.1.4.7 User Signature

The memory has one additional reprogrammable page that can be used as page signature by the user. It is accessible through specific
modes, for erase, write and read operations. Erase pin assertion will not erase the User Signature page.

8.1.4.8 Fast Flash Programming Interface

The Fast Flash Programming Interface allows programming the device through either a serial JTAG interface or through a multiplexed
fully-handshaked parallel port. It allows gang programming with market-standard industrial programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands.

8.1.4.9 SAM-BA Boot

The SAM-BA Boot is a default Boot Program for the master processor (CM4P0) which provides an easy way to program in-situ the on-
chip Flash memory.

The SAM-BA Boot Assistant supports serial communication via the UARTO.

The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).
The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 1 is set to 0.

DS60001719B-page 40 © 2022 Microchip Technology Inc.

SAM4CM SERIES

8.1.4.10 GPNVM Bits

The SAM4CM features two (SAM4CM16/SAM4CM8/SAM4CM4) or three (SAM4CM32) GPNVM bits. These bits can be cleared or set
respectively through the commands “Clear GPNVM Bit” and “Set GPNVM Bit” of the EEFC User Interface (refer to Section 22. “Enhanced
Embedded Flash Controller (EEFC)”).

Table 8-3: General-purpose Nonvolatile Memory Bits
GPNVM Bit Function
0 Security bit
1 Boot mode selection
2 Memory Plane Boot Selection (Plane 0 or Plane 1) (SAM4CM32 only)

8.1.5 Boot Strategy

Figure 8-5 below shows a load view of the memory at boot time.

Figure 8-5: Simplified Load View at Boot Time
(\ (Flash \ (\
COI’e 0 C ICode / DCode Bus
ore 1
ICode / DCode Bus Appl'cahon
—p Metrology Core
Core 0 Core1 (Cortex-M4F)
Application Core Application
p(%ortex_w,) (Binary Img.)
N
SRAM2
p S-Bus
—> SRAMO]
—f 1
Clock & Reset
\ / Control J
(&

Sub-system 0 Sub-system 1

Note: Matrices, AHB and APB Bridges are not represented.

8.1.5.1 Application Core (Core 0) Boot Process

The application processor (CM4P0) always boots at the address 0x0. To ensure maximum boot possibilities, the memory layout can be
changed using a General-purpose NVM (GPNVM) bit. A GPNVM bit is used to boot either on the ROM (default) or from the Flash. The
GPNVM bit can be cleared or set through the commands “Clear General-purpose NVM Bit” and “Set General-purpose NVM Bit” of the
EEFC User Interface. Setting GPNVM Bit 1 selects the boot from Flash whereas clearing this bit selects the boot from ROM. Asserting
ERASE clears the GPNVM Bit 1 and thus selects the boot from the ROM by default.

8.1.5.2 Metrology/Coprocessor Core (Core 1) Boot Process

After reset, the Sub-system 1 is hold in reset and with no clock. It is up to the Master Application (Core 0 Application) running on the Core
0 to enable the Sub-system 1. Then the application code can be downloaded into the CM4P1 Boot memory (SRAM1), and CM4P0 can
afterwards de-assert the CM4P1 reset line. The secondary processor (CM4P1) always identifies SRAM1 as “Boot memory”.

8.1.5.3 Sub-system 1 Startup Sequence

Atfter the Core 0 is booted from Flash, the Core 0 application must perform the following steps:

1. Enable Core 1 System Clock (Bus and peripherals).

© 2022 Microchip Technology Inc. DS60001719B-page 41

SAM4CM SERIES

Enable Core 1 Clock.

o0 A wN

. Release Core 1 Reset.

Release Core 1 System Reset (Bus and peripherals).
Enable SRAM1 and SRAM2 Clock.
Copy Core 1 Application from Flash into SRAM1.

After Step 6, the Core 1 boots from SRAM1 memory.

Pseudo-code:

1- // Enable Coprocessor Bus Master Clock

2- // Enable Coprocessor Clocks

3- // Release coprocessor peripheral reset
4- // Enable Core 1 SRAM1 and SRAM2 Memories

5- // Copy Core 1 application code from Flash into SRAMI.

6- // Release coprocessor reset

(PMC_SCER.CPCK) .
// Set Coprocessor Clock Prescaler and Source
// Choose coprocessor main clock source

(RSTC_CPMR.CPROCEN) .

8.1.54 Sub-system 1 Start-up Time

Table 8-4 provides the start-up time of sub-system 1 in terms of the number of clock cycles for different CPU speeds. The figures in this
table take into account the time to copy 16 Kbytes of code from Flash into SRAM1 using the ‘memcopy’ function from the standard C library
and to release Core 1 reset signal. The start-up time of the device from power-up is not taken into account.

(PMC_SCER.CPBMCK) .
(PMC_MCKR.CPPRES) .
(PMC_MCKR.CPCSS) .
(RSTC_CPMR.CPEREN) .

(PMC_PCER.PID42) .

Table 8-4: Sub-system 1 Start-up Time
Core Clock (MHz) Flash Wait State Core Clock Cycles Time

21 0 44122 2.1 ms
42 1 45158 1.07 ms
63 2 46203 735 ps
85 3 47242 55 ps
106 4 48284 455 ys
120 5 49329 411 us

8.1.5.5 Typical Execution View

Figure 8-6 provides the code execution view for both Cortex-M4 cores. AHB to APB, AHB to AHB and Matrices are not represented in this

view.

DS60001719B-page 42

© 2022 Microchip Technology Inc.

SAM4CM SERIES

Figure 8-6:

SRAMO

Core 0,

RW Data,
Stack, Heap

Execution View

O)

S-Bus

ICode / DCode Bus

v

Flash

Y.l Cache

Core 0
Application
Core
(Cortex-M4)

S-Bus

Ctrl.
CMCCO),

Core 0
Code,

ROData |[€

Core 1
Code,
RO Data

Core 1
Application

-

Core 0 <--> Core 1

Binary
—

SRAM2

Core 1,
RW Data,
Stack, Heap

Msg. Buffer (1)

[Sub-system 0

Note 1: SRAMO can also be used as Message Buffer Exchange.
2: Matrices, AHB and APB Bridges are not represented.

8.2

External Memories

Cache |

Ctrl.
CMCCH)

| Sub-system 1|

-
/ \ SRAM1
ICode / DCode Bus |« ~ Core 1
Code,
RO Data
ICode / DCode Bus
Core 1
Metrology
Core
(Cortex-M4F)
S-Bus

The SAM4CM External Bus Interface (EBI) provides the interface to a wide range of external memories and to any parallel peripheral.
Code execution in memories connected to the EBI may benefit from the use of the cache memories. Refer to Figure 7-2 and Figure 7-3.

The Static Memory Controllers (SMCO0/1) / External Bus Interface (EBI) can be used by either the CM4P0 or CM4P1 but only one path is
optimized, CM4P0 < SMCO or CM4P1 <> SMC1.

The SMCO0 and SMC1 use the same pins on the EBI. Only one interface can be used at any time.
The selection of the interface is made in the Matrix User Interface Registers (in the System I/O Configuration Register).
The SMCO is used by default.

© 2022 Microchip Technology Inc.

DS60001719B-page 43

SAM4CM SERIES

9. Real-time Event Management

The events generated by peripherals are designed to be directly routed to peripherals managing/using these events without processor
intervention. Peripherals receiving events contain logic to select the required event.

9.1 Embedded Characteristics

» Timers generate event triggers which are directly routed to event managers, such as ADC, to start measurement/conversion without
processor intervention

+ UART, USART, SPI, TWI, and PIO generate event triggers directly connected to Peripheral DMA controller (PDC) for data transfer
without processor intervention

* PMC Security Event (Clock Failure Detection) can be programmed to switch the MCK on reliable main RC internal clock

9.2 Real-time Event Mapping List

Table 9-1: Real-time Event Mapping List
Function Application Description Event Source Event Destination

Automatic switch to reliable main
Safety General-purpose RC oscillator in case of main crystal
clock failure(")

Power Management Controller

(PMC) PMC

Immediate (asynchronous) clear of
Security General-purpose first half of GPBR on tamper Anti-tamper Inputs (TMPXx) GPBR
detection through pins(®)

TC Output 0
TC Output 1
TC Output 2

Measfurement General-purpose Trigger source selection in ADC(®) > ADC
trigger TC Output 3
TC Output 4

TC Output 5

Note 1: Refer to Section 30.13 “Main Clock Failure Detector”.

2: Refer to Section 20.4.9.3 “Low-power Debouncer Inputs (Tamper Detection Pins)’ and Section 21.3.1 “General Purpose
Backup Register x”.

3: Refer to Section 40.7.2 “ADC Mode Register”.

10. System Controller

The System Controller comprises a set of peripherals. It handles key elements of the system, such as power, resets, clocks, time, inter-
rupts, watchdog, reinforced safety watchdog, etc.

10.1 System Controller and Peripheral Mapping

Refer to Figure 7-4.
All the peripherals are in the bit band region and are mapped in the bit band alias region.

10.2 Power Supply Monitoring

The SAM4CM embeds Supply Monitor, Power-on-Reset and Brownout detectors for power supplies monitoring allowing to warn and/or
reset the chip.

10.2.1 Power-on-Reset on VDDCORE

The Power-on reset monitors VDDCORE. It is always activated and monitors voltage at start-up but also during power-down. If VDDCORE
goes below the threshold voltage, the entire chip (except VDDBU domain) is reset. For more information, refer to Section 46. “Electrical
Characteristics”.

DS60001719B-page 44 © 2022 Microchip Technology Inc.

SAM4CM SERIES

10.2.2 Brownout Detector on VDDCORE

The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by software through the Supply Controller
(SUPC_MR).

If VDDCORE goes below the threshold voltage, the reset of the core is asserted.

10.2.3 Power-on Reset on VDDIO

The Power-on reset monitors VDDIO. It is always activated and monitors voltage at start-up but also during power-down. If VDDIO goes
below the threshold voltage, only the 10s state and the Embedded Flash are reset, but the cores and peripherals are not. Voltage detection
is not programmable.

10.2.4 Supply Monitor on VDDIO

The supply monitor on VDDIO is fully programmable with 16 steps for the threshold (between 1.6V to 3.4V). It provides the user the flex-
ibility to set a voltage level detection higher then the power-on-reset on VDDIO. Either a reset or an interrupt can be generated upon detec-
tion. It can be activated by software and it is controlled by the Supply Controller (SUPC). A sample mode is possible. It divides the supply
monitor power consumption by a factor of up to 2048.

The supply monitor is used as “system alert” in case VDDIO supply is falling. It can be used while the device is in Backup mode to wake
up the device if VDDIO is falling.

10.2.5 Power-on Reset and Brownout Detector on VDDBU

The Power-on reset monitors VDDBU. It is active by default and monitors voltage at start-up but also during power-down. It can be deac-
tivated by software through the Supply Controller (SUPC_MR). If VDDBU goes below the threshold voltage, the entire chip is reset.

10.2.6 Power-on Reset on EMAFE Internal VDDIO

The EMAFE Power-on reset monitors VDDIO. It is always activated and monitors voltage at start-up but also during power-down. If VDDIO
goes below the threshold voltage, EMAFE registers are reset and the EMAFE regulator is shut down. Note that this POR does not reset
the rest of the product. Only the EMAFE related registers are reset.

10.3 Reset Controller

The Reset Controller uses the power-on-reset, supply monitor and brownout detector cells.

The Reset Controller returns the source of the last reset to the software. Refer to description of field RSTTYP in Section 15.5.2 “Reset
Controller Status Register”.

The Reset Controller controls the internal resets of the system (or independent reset of CM4P1 processor) and the NRST pin input/output.
It shapes a reset signal for the external devices, simplifying to a minimum connection of a push-button on the NRST pin to implement a
manual reset.

The configuration of the Reset Controller is saved during Backup mode as it is supplied by VDDBU.

10.4 Supply Controller (SUPC)

The Supply Controller controls the power supplies of each section of the processor.

The Supply Controller starts up the device by sequentially enabling the internal power switches and the Voltage Regulator, then it gener-
ates the proper reset signals to the core power supply.

It also sets the system in different low-power modes, wakes it up from a wide range of events.

© 2022 Microchip Technology Inc. DS60001719B-page 45

SAM4CM SERIES

11. Peripherals

11.1 Peripheral Identifiers

Table 11-1 defines the Peripheral Identifiers. A peripheral identifier is required for the control of the peripheral interrupt with the Nested
Vectored Interrupt Controller, and for the control of the peripheral clock with the Power Management Controller.

The two ARM Cortex-M4 processors share the same interrupt mapping, and thus, they share all the interrupts of the peripherals.

Note: = Some peripherals are on the Bus Matrix 0/AHB to APB Bridge 0 and other peripherals are on the Bus Matrix 1/ AHB to APB
Bridge 1. If Core 0 needs to access a peripheral on the Bus Matrix 1/AHB to APB Bridge 1, the Core 0 application must enable
the Core 1 System Clock (Bus and peripherals) and release Core 1 System Reset (Bus and peripherals). Peripherals on Sub-
system 0 or Sub-system 1 are mentioned in the Instance description table that follows.

Table 11-1: Peripheral Identifiers
PMC

Instance ID Instance Name NVIC Interrupt Clock Control Instance Description
0 SUPC X - Supply Controller
1 RSTC X - Reset Controller
2 RTC X - Real-time Clock
3 RTT X - Real-time Timer
4 WDT X - Watchdog Timer
5 PMC X - Power Management Controller
6 EFCO X - Enhanced Embedded Flash Controller O
7 EFC1 X - Enhanced Embedded Flash Controller 1
8 UARTO X X UART 0 (Sub-system 0 Clock)
9 - - - Reserved
10 SMCO X Static Memory Controller 0 (Sub-system 0 Clock)
11 PIOA X X Parallel 1/O Controller A (Sub-system 0 Clock)
12 PIOB X X Parallel 1/0 Controller B (Sub-system 0 Clock)
13 - - - Reserved
14 USARTO X X USART 0 (Sub-system 0 Clock)
15 USART1 X X USART 1 (Sub-system 0 Clock)
16 USART2 X X USART 2 (Sub-system 0 Clock)
17 USART3 X X USART 3 (Sub-system 0 Clock)
18 - - - Reserved
19 TWIO X X Two Wire Interface 0 (Sub-system 0 Clock)
20 TWH X X Two Wire Interface 1 (Sub-system 0 Clock)
21 SPIO X X Serial Peripheral Interface 0 (Sub-system 0 Clock)
22 - - - Reserved
23 TCO X X Timer/Counter 0 (Sub-system 0 Clock)
24 TC1 X X Timer/Counter 1 (Sub-system 0 Clock)
25 TC2 X X Timer/Counter 2 (Sub-system 0 Clock)
26 TC3 X X Timer/Counter 3 (Sub-system 0 Clock)
27 TC4 X X Timer/Counter 4 (Sub-system 0 Clock)

DS60001719B-page 46

© 2022 Microchip Technology Inc.

SAM4CM SERIES

Table 11-1: Peripheral Identifiers (Continued)
PMC
Instance ID Instance Name NVIC Interrupt Clock Control Instance Description
28 TC5 X X Timer/Counter 5 (Sub-system 0 Clock)
29 ADC X X Analog-to-Digital Converter (Sub-system 0 Clock)
30 ARM X _ FPU signals (only on CM4P1 core): FPIXC, FPOFC,
FPUFC, FPIOC, FPDZC, FPIDC, FPIXC
31 IPCO X X Icr;lt(()ecri)rocessor communication 0 (Sub-system 0
32 SLCDC X X Segment LCD Controller (Sub-system 0 Clock)
33 TRNG X X True Random Generator (Sub-system 0 Clock)
34 ICM X X Integrity Check Module (Sub-system 0 Clock)
35 CPKCC X X S/zf:r:aol (P;:Jotﬁ:f) Key Cryptography Controller (Sub-
36 AES X X Advanced Enhanced Standard (Sub-system 0 Clock)
37 PIOC X X Parallel 1/0 Controller C (Sub-system 1 Clock)
38 UART1 X X UART 1 (Sub-system 1 Clock)
39 IPC1 X X Igltsgka)rocessor communication 1 (Sub-system 1
40 - - - Reserved
41 PWM X X Pulse Width Modulation (Sub-system 1 Clock)
o | s : K| oL cote et) AN Sy
43 SMC1 - X Static Memory Controller 1 (Sub-system 1 Clock)

© 2022 Microchip Technology Inc.

DS60001719B-page 47

SAM4CM SERIES

11.2 Peripheral DMA Controller (PDC)

Two Peripheral DMA Controllers (PDC) are available:

+ PDCO—dedicated to peripherals on APBO
+ PDC1—dedicated to peripherals on APB1

Features of the PDC include:

+ Data transfer handling between peripherals and memories
* Low bus arbitration overhead
- One master clock cycle needed for a transfer from memory to peripheral
- Two master clock cycles needed for a transfer from peripheral to memory
* Next Pointer management to reduce interrupt latency requirement

Note that Peripheral DMA 0 on Matrix 0 cannot access SRAM1 or SRAM2. Peripheral DMA 1 on Matrix 1 cannot access SRAMO.
The PDC handles transfer requests from the channel according to the following priorities (Low to High priorities):

Table 11-2: Peripheral DMA Controller (PDCO0)

Instance Name Channel T/R
AES Transmit
TWIO Transmit

UARTO Transmit
USART1 Transmit
USARTO Transmit
USART2 Transmit
USART3 Transmit

SPIO Transmit
AES Receive
TWIO Receive

UARTO Receive
USART3 Receive
USART2 Receive
USART1 Receive
USARTO Receive

ADC Receive
SPIO Receive
Table 11-3: Peripheral DMA Controller (PDC1)

Instance Name Channel T/R

UART1 Transmit

UART1 Receive

DS60001719B-page 48

© 2022 Microchip Technology Inc.

SAM4CM SERIES

11.3 APB/AHB Bridge

The SAM4CM embeds two peripheral bridges—one on each Matrix, with Matrix 0 for CM4P0 and Matrix 1 for CM4P1.

The peripherals of the bridge corresponding to CM4P0 (APBO) are clocked by MCK, and the peripherals of the bridge corresponding to
CM4P1 (APB1) are clocked by CPBMCK.

11.4 Peripheral Signal Multiplexing on I/O Lines

The SAM4CM can multiplex the 1/O lines of the peripheral set.

The SAM4CM PIO Controllers control up to 32 lines. Each line can be assigned to one of two peripheral functions: A or B. The multiplexing
tables that follow define how the 1/O lines of the peripherals A and B are multiplexed on the PIO Controllers. The column “Comments” has
been inserted in this table for the user’'s own comments; it may be used to track how pins are defined in an application.

Note that some peripheral functions which are output only may be duplicated within the tables.

11.4.1 Pad Features

In Table 11-5 to Table 11-7, the column “Feature” indicates whether the corresponding I/O line has programmable Pull-up, Pull-down and/
or Schmitt Trigger. Table 11-4 provides the key to the abbreviations used.

Table 11-4: I1/0 Line Features Abbreviations

Abbreviation Definition

PUP(P) Programmable Pull-up

PUP(NP) Non-programmable Pull-up
PDN(P) Programmable Pull-down

PDN(NP) Non-programmable Pull-down
ST(P) Programmable Schmitt Trigger
ST(NP) Non-programmable Schmitt Trigger
LDRV(P) Programmable Low Drive
LDRV(NRP) Non-programmable Low Drive
HDRV(P) Programmable High Drive
HDRV(NP) Non-programmable High Drive
MaxDRV(NP) Non-programmable Maximum Drive

11.4.2 Reset State
In Table 11-5 to Table 11-7, the column “Reset State” indicates the reset state of the line.

* PIO or signal name— Indicates whether the PIO line resets in 1/O mode or in peripheral mode.
If “PIO” is mentioned, the PIO line is in general-purpose /O (GPIO). If a signal name is mentioned in the “Reset State” column, the
PIO line is assigned to this function.

* | or O— Indicates whether the signal is input or output state.
* PU or PD— Indicates whether Pull-up, Pull-down or nothing is enabled.
* ST— Indicates that Schmitt Trigger is enabled.

© 2022 Microchip Technology Inc. DS60001719B-page 49

SAM4CM SERIES

1.4.3 PIO Controller A Multiplexing

DS60001719B-page 50 © 2022 Microchip Technology Inc.

SAM4CM SERIES

Table 11-5: Multiplexing on PIO Controller A (PIOA)

- LDRV(P) / HDRV(P)

Extra System
I/O Line | Peripheral A | Peripheral B | Peripheral C Function Function Feature Reset State Comments
- PUP(P) / PDN(P)
PAO RTS3 PCK2 A10 COomo WKUP5 -ST(P)
- MaxDRV(NP)
PA1 CTS3 NCS1 A9 COM1 -
PA2 SCK3 NCS2 A8 Com2 -
PA3 RXD3 NCS3 A7 COom3 WKUP6
- PUP(P) / PDN(P)
PA4 TXD3 - A6 COM4/AD1 - - ST(P)
- LDRV(P) / HDRV(P)
PA5 | SPIO_NPCSO0 - A5 COMS5/AD2 -
PA6 | SPIO_MISO - A4 SEGO -
PA7 | SPIO_MOSI - A3 SEG1 -
- PUP(P) / PDN(P)
PA8 | SPIO_SPCK - A2 SEG2 - -ST(P)
- MaxDRV(NP)
PA9 RXD2 - A1 SEG3 WKUP2
PA10 TXD2 - AO0/NBSO SEG4 -
PA11 RXD1 - A23 SEG5 WKUP9
A22/
PA12 TXD1 - SEG6/ADO -
NANDCLE
A21/ PIO, I, PU
PA13 SCK2 TIOAO SEG7 -
NANDALE
PA14 RTS2 TIOBO A20 SEG8 WKUP3
PA15 CTSs2 TIOA4 A19 SEG9 -
PA16 SCK1 TIOB4 A18 SEG10 -
PA17 RTS1 TCLK4 A17 SEG11 WKUP7 - PUP(P) / PDN(P)
- 8T(P)
PA18 CTs1 TIOA5 A16 SEG12 - _LDRV(P)/ HDRV(P)
PA19 RTSO TCLK5 A15 SEG13 WKUP4
PA20 CTS0 TIOB5 A14 SEG14 -
PA21 | SPIO_NPCS1 - A13 SEG15 -
PA22 | SPI0O_NPCS2 - A12 SEG16 -
PA23 |SPIO_NPCS3 - A1 SEG17 -
PA24 TWDO - A10 SEG18 WKUP1
PA25 TWCKO - A9 SEG19 -
PA26 - - A8 SEG20 -
PA27 - - NCSO0 SEG21 -
PA28 - - NRD SEG22 -
- PUP(P) / PDN(P)
PA30 PCK1 - A15 - XOouT - ST(P) XouT
- LDRV(P) / HDRV(P)
- PUP(P) / PDN(P)
PA31 PCKO - A14 - XIN -ST(P) XIN

© 2022 Microchip Technology Inc.

DS60001719B-page 51

SAM4CM SERIES

11.4.4 PIO Controller B Multiplexing
Table 11-6: Multiplexing on PIO Controller B (PIOB)
110 Peripheral Peripheral Peripheral Extra System
Line A B C Function Function Feature Reset State Comments
- PUP(P) / PDN(P)
PBO TWD1 - - - TDI -ST(P) JTAG, |
-LDRV(P)/
HDRV(P)
TDO/ - PUP(P)/PDN(P)
PB1 TWCKA1 - - RTCOUTO JTAG, O
TRACESWO - LDRV(NP)
PB2 - - - - TMS/SWDIO
JTAG, |
PB3 - - - - TCK/SWCLK
PB4 URXDO TCLKO A17 - WKUPS8
PB5 UTXDO - A16 - -
PB6 - - DO SEG24 - - PUP(P) / PDN(P)
PB7 TIOA1 - D1 SEG25 - -ST(P)
-LDRV(P)/
PB8 TIOB1 - D2 SEG26 - HDRV(P)
PB9 TCLK1 - D3 SEG27 -
PB10 TIOA2 - D4 SEG28 -
PB11 TIOB2 - D5 SEG29 - PIO, I, PU
PB12 TCLK2 - D6 SEG30 -
- PUP(P) / PDN(P)
PB13 PCKO - D7 SEG31/AD3 - - ST(P)
- MaxDRV(NP)
NWRO/
PB14 — — SEG32 -
NWE
NWR1/
PB15 - - SEG33 -
NBS1
- PUP(P) / PDN(P) TMP1 is available
WKUP10/ :
PB16 RXDO - D8 SEG34 - ST(P) only in SAM4CMS
TMP1 _LDRV(P)/ devices.
PB17 TXDO - D9 SEG35 - HDRV(P)
PB18 SCKO PCK2 D10 SEG36 - PIO, I, PD
PB19 - - D11 SEG37 -
PB21 - - D13 SEG39 WKUP11

DS60001719B-page 52

© 2022 Microchip Technology Inc.

SAM4CM SERIES

11.4.5 PIO Controller C Multiplexing

Table 11-7: Multiplexing on PIO Controller C (PIOC)

110 Extra System
Line Peripheral A Peripheral B Peripheral C Function Function Feature Reset State Comments
- PUP(P)
PCO UTXD1 PWMO - - - - MaxDRV(NP)

- PUP(P) / PDN(P)
PC1 URXD1 PWM1 - - WKUP12 - ST(P) PIO, I, PU
- LDRV(P) / HDRV(P)

PC6 PWMO - - _ _
-PUP(P) / PDN(P)

PC7 PWM1 - - - - _STP)

PC9 PWM3 - - - ERASE -LDRV(P)/HDRV(P) | ERASE, PD

© 2022 Microchip Technology Inc. DS60001719B-page 53

SAM4CM SERIES

12. ARM Cortex-M4 Processor

121 Description

The Cortex-M4 processor is a high performance 32-bit processor designed for the microcontroller market. It offers significant benefits to
developers, including outstanding processing performance combined with fast interrupt handling, enhanced system debug with extensive
breakpoint and trace capabilities, efficient processor core, system and memories, ultra-low power consumption with integrated sleep
modes, and platform security robustness, with integrated memory protection unit (MPU).

The Cortex-M4 processor is built on a high-performance processor core, with a 3-stage pipeline Harvard architecture, making it ideal for
demanding embedded applications. The processor delivers exceptional power efficiency through an efficient instruction set and exten-
sively optimized design, providing high-end processing hardware including IEEE754-compliant single-precision floating-point computa-
tion, a range of single-cycle and SIMD multiplication and multiply-with-accumulate capabilities, saturating arithmetic and dedicated
hardware division.

To facilitate the design of cost-sensitive devices, the Cortex-M4 processor implements tightly-coupled system components that reduce
processor area while significantly improving interrupt handling and system debug capabilities. The Cortex-M4 processor implements a
version of the Thumb® instruction set based on Thumb-2 technology, ensuring high code density and reduced program memory require-
ments. The Cortex-M4 instruction set provides the exceptional performance expected of a modern 32-bit architecture, with the high code
density of 8-bit and 16-bit microcontrollers.

The Cortex-M4 processor closely integrates a configurable NVIC, to deliver industry-leading interrupt performance. The NVIC includes a
non-maskable interrupt (NMI), and provides up to 256 interrupt priority levels. The tight integration of the processor core and NVIC pro-
vides fast execution of interrupt service routines (ISRs), dramatically reducing the interrupt latency. This is achieved through the hardware
stacking of registers, and the ability to suspend load-multiple and store-multiple operations. Interrupt handlers do not require wrapping in
assembler code, removing any code overhead from the ISRs. A tail-chain optimization also significantly reduces the overhead when
switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that enables the entire device
to be rapidly powered down while still retaining program state.

12.1.1 System Level Interface

The Cortex-M4 processor provides multiple interfaces using AMBA® technology to provide high speed, low latency memory accesses. It
supports unaligned data accesses and implements atomic bit manipulation that enables faster peripheral controls, system spinlocks and
thread-safe Boolean data handling.

The Cortex-M4 processor has a Memory Protection Unit (MPU) that provides fine grain memory control, enabling applications to utilize
multiple privilege levels, separating and protecting code, data and stack on a task-by-task basis. Such requirements are becoming critical
in many embedded applications such as automotive.

12.1.2 Integrated Configurable Debug

The Cortex-M4 processor implements a complete hardware debug solution. This provides high system visibility of the processor and mem-
ory through either a traditional JTAG port or a 2-pin Serial Wire Debug (SWD) port that is ideal for microcontrollers and other small package
devices.

For system trace the processor integrates an Instrumentation Trace Macrocell (ITM) alongside data watchpoints and a profiling unit. To
enable simple and cost-effective profiling of the system events these generate, a Serial Wire Viewer (SWV) can export a stream of soft-
ware-generated messages, data trace, and profiling information through a single pin.

The Flash Patch and Breakpoint Unit (FPB) provides up to eight hardware breakpoint comparators that debuggers can use. The compar-
ators in the FPB also provide remap functions of up to eight words in the program code in the CODE memory region. This enables appli-
cations stored on a non-erasable, ROM-based microcontroller to be patched if a small programmable memory, for example flash, is
available in the device. During initialization, the application in ROM detects, from the programmable memory, whether a patch is required.
If a patch is required, the application programs the FPB to remap a number of addresses. When those addresses are accessed, the
accesses are redirected to a remap table specified in the FPB configuration, which means the program in the non-modifiable ROM can
be patched.

12.2 Embedded Characteristics

« Tight integration of system peripherals reduces area and development costs
« Thumb instruction set combines high code density with 32-bit performance

« |IEEE754-compliant single-precision FPU

+ Code-patch ability for ROM system updates

DS60001719B-page 54 © 2022 Microchip Technology Inc.

SAM4CM SERIES

« Power control optimization of system components
* Integrated sleep modes for low power consumption
» Fast code execution permits slower processor clock or increases sleep mode time
« Hardware division and fast digital-signal-processing oriented multiply accumulate
+ Saturating arithmetic for signal processing
« Deterministic, high-performance interrupt handling for time-critical applications
* Memory Protection Unit (MPU) for safety-critical applications
+ Extensive debug and trace capabilities:
- Serial Wire Debug and Serial Wire Trace reduce the number of pins required for debugging, tracing, and code profiling.

12.3 Block Diagram

Figure 12-1: Typical Cortex-M4F Implementation
Cortex-M4F
Processor FPU
NVIC <>
Processor
Core
Debug Memor Serial
4——P Access wory: Wire ——P»
Protection Unit .
Port t ¢ Viewer
Flash Data
Patch Watchpoints|
Bus Matrix
Code SRAM and
Interface Peripheral Interface
A A
y v

12.4 Cortex-M4 Models

12.41 Programmers Model

This section describes the Cortex-M4 programmers model. In addition to the individual core register descriptions, it contains information
about the processor modes and privilege levels for software execution and stacks.

12411 Processor Modes and Privilege Levels for Software Execution
The processor modes are:
* Thread mode

Used to execute application software. The processor enters the Thread mode when it comes out of reset.
* Handler mode

Used to handle exceptions. The processor returns to the Thread mode when it has finished exception processing.
The privilege levels for software execution are:
* Unprivileged

The software:

- Has limited access to the MSR and MRS instructions, and cannot use the CPS instruction

- Cannot access the System Timer, NVIC, or System Control Block

- Might have a restricted access to memory or peripherals.

Unprivileged software executes at the unprivileged level.

© 2022 Microchip Technology Inc. DS60001719B-page 55

SAM4CM SERIES

* Privileged

The software can use all the instructions and has access to all resources. Privileged software executes at the privileged level.

In Thread mode, the Control Register controls whether the software execution is privileged or unprivileged. Refer to “Control Register”. In
Handler mode, software execution is always privileged.

Only privileged software can write to the Control Register to change the privilege level for software execution in Thread mode. Unprivileged
software can use the SVC instruction to make a supervisor call to transfer control to privileged software.

12.4.1.2 Stacks

The processor uses a full descending stack. This means the stack pointer holds the address of the last stacked item in memory When the
processor pushes a new item onto the stack, it decrements the stack pointer and then writes the item to the new memory location. The
processor implements two stacks, the main stack and the process stack, with a pointer for each held in independent registers. Refer to

“Stack Pointer”.

In Thread mode, the Control Register controls whether the processor uses the main stack or the process stack, see “Control Register”.

In Handler mode, the processor always uses the main stack.

The options for processor operations are:

Table 12-1: Summary of Processor Mode, Execution Privilege Level, and Stack Use Options
Processor Privilege Level for
Mode Used to Execute Software Execution Stack Used
Thread Applications Privileged or unprivileged () | Main stack or process stack(")
Handler Exception handlers Always privileged Main stack

Note 1: See “Control Register”.

12.41.3 Core Registers

Figure 12-2:

Processor Core Registers

—

Low registers

High registers

Stack Pointer
Link Register

Program Counter

RO

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

General-purpose registers

SP (R13)

PSP H MSP* *Banked version of SP

LR (R14)

PC (R15)

PSR

PRIMASK

FAULTMASK

BASEPRI

CONTROL

Program status register

Exception mask registers Special registers

CONTROL register

DS60001719B-page 56

© 2022 Microchip Technology Inc.

SAM4CM SERIES

Table 12-2: Processor Core Registers
Register Name Access(?) Required Privilege(z) Reset
General-purpose registers RO0-R12 Read/Write Either Unknown
Stack Pointer MSP Read/Write Privileged See description
Stack Pointer PSP Read/Write Either Unknown
Link Register LR Read/Write Either OxFFFFFFFF
Program Counter PC Read/Write Either See description
Program Status Register PSR Read/Write Privileged 0x01000000
Application Program Status Register APSR Read/Write Either 0x00000000
Interrupt Program Status Register IPSR Read-only Privileged 0x00000000
Execution Program Status Register EPSR Read-only Privileged 0x01000000
Priority Mask Register PRIMASK Read/Write Privileged 0x00000000
Fault Mask Register FAULTMASK Read/Write Privileged 0x00000000
Base Priority Mask Register BASEPRI Read/Write Privileged 0x00000000
Control Register CONTROL Read/Write Privileged 0x00000000

Note 1: Describes access type during program execution in thread mode and Handler mode. Debug access can differ.

2: An entry of Either means privileged and unprivileged software can access the register.

12.4.1.4 General-purpose Registers
RO0-R12 are 32-bit general-purpose registers for data operations.

12.41.5 Stack Pointer
The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the Control Register indicates the stack pointer to use:

* 0 = Main Stack Pointer (MSP). This is the reset value.
* 1= Process Stack Pointer (PSP).

On reset, the processor loads the MSP with the value from address 0x00000000.
12.4.1.6 Link Register

The Link Register (LR) is register R14. It stores the return information for subroutines, function calls, and exceptions. On reset, the pro-
cessor loads the LR value OxFFFFFFFF.
12.41.7 Program Counter

The Program Counter (PC) is register R15. It contains the current program address. On reset, the processor loads the PC with the value
of the reset vector, which is at address 0x00000004. Bit[0] of the value is loaded into the EPSR T-bit at reset and must be 1.

© 2022 Microchip Technology Inc. DS60001719B-page 57

SAM4CM SERIES

12.4.1.8 Program Status Register

Name:PSR
Access: Read/Write
Reset: 0x000000000

31 30 29 28 27 26 25 24

| N Y4 C Vv | Q ICINT T |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| ICINIT - ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

The Program Status Register (PSR) combines:

* Application Program Status Register (APSR)

* Interrupt Program Status Register (IPSR)
* Execution Program Status Register (EPSR).

These registers are mutually exclusive bitfields in the 32-bit PSR.

The PSR accesses these registers individually or as a combination of any two or all three registers, using the register name as an argu-
ment to the MSR or MRS instructions. For example:

* Read of all the registers using PSR with the MRS instruction
» Write to the APSR N, Z, C, V and Q bits using APSR_nzcvq with the MSR instruction.

The PSR combinations and attributes are:

Name Access Combination

PSR Read/Write((2) APSR, EPSR, and IPSR
IEPSR Read-only EPSR and IPSR

IAPSR Read/Write(") APSR and IPSR
EAPSR Read/Write(?) APSR and EPSR

Note 1: The processor ignores writes to the IPSR bits.

2: Reads of the EPSR bits return zero, and the processor ignores writes to these bits.

See the instruction descriptions “MRS” and “MSR” for more information about how to access the program status registers.

DS60001719B-page 58

© 2022 Microchip Technology Inc.

SAM4CM SERIES

12.4.1.9 Application Program Status Register
Name:APSR

Access: Read/Write

Reset: 0x000000000

31 30 29 28 27 26 25 24

| N Z C V [Q [- |
23 22 21 20 19 18 17 16

| - [GE[3:0] |
15 14 13 12 11 10 9 8

I - |
7 6 5 4 3 2 1 0

The APSR contains the current state of the condition flags from previous instruction executions.

N: Negative Flag
0: Operation result was positive, zero, greater than, or equal
1: Operation result was negative or less than.

Z: Zero Flag
0: Operation result was not zero

1: Operation result was zero.

C: Carry or Borrow Flag

Carry or borrow flag:

0: Add operation did not result in a carry bit or subtract operation resulted in a borrow bit
1: Add operation resulted in a carry bit or subtract operation did not result in a borrow bit.

V: Overflow Flag
0: Operation did not result in an overflow
1: Operation resulted in an overflow.

Q: DSP Overflow and Saturation Flag

Sticky saturation flag:

0: Indicates that saturation has not occurred since reset or since the bit was last cleared to zero
1: Indicates when an SSAT or USAT instruction results in saturation.

This bit is cleared to zero by software using an MRS instruction.

GE[19:16]: Greater Than or Equal Flags
See “SEL” for more information.

© 2022 Microchip Technology Inc. DS60001719B-page 59

SAM4CM SERIES

12.4.1.10 Interrupt Program Status Register
Name:IPSR

Access: Read/Write

Reset: 0x000000000

31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - ISR_NUMBER |
7 6 5 4 3 2 1 0
| ISR_NUMBER

The IPSR contains the exception type number of the current Interrupt Service Routine (ISR).

ISR_NUMBER: Number of the Current Exception
0 = Thread mode

1 = Reserved

2 =NMI

3 = Hard fault

4 = Memory management fault

5 = Bus fault

6 = Usage fault

7-10 = Reserved

11 = SVCall

12 = Reserved for Debug

13 = Reserved

14 = PendSV

15 = SysTick

16 = IRQO

56 = IRQ40

See “Exception Types” for more information.

DS60001719B-page 60

© 2022 Microchip Technology Inc.

SAM4CM SERIES

12.4.1.11

Name:EPSR
Access: Read/Write
Reset: 0x000000000

Execution Program Status Register

31 30 29 28 27 26 25 24

| - ICINT T |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| ICINT |
7 6 5 4 3 2 1 0

The EPSR contains the Thumb state bit, and the execution state bits for either the If-Then (IT) instruction, or the Interruptible-Continuable

Instruction (ICI) field for an interrupted load multiple or store multiple instruction.

Attempts to read the EPSR directly through application software using the MSR instruction always return zero. Attempts to write the EPSR
using the MSR instruction in the application software are ignored. Fault handlers can examine the EPSR value in the stacked PSR to indi-

cate the operation that is at fault. See “Exception Entry and Return”.

ICI: Interruptible-continuable Instruction
When an interrupt occurs during the execution of an LDM, STM, PUSH, POP, VLDM, VSTM, VPUSH, or VPOP instruction, the processor:

— Stops the load multiple or store multiple instruction operation temporarily

— Stores the next register operand in the multiple operation to EPSR bits[15:12].

After servicing the interrupt, the processor:

— Returns to the register pointed to by bits[15:12]
— Resumes the execution of the multiple load or store instruction.
When the EPSR holds the ICI execution state, bits[26:25,11:10] are zero.

IT: If-Then Instruction

Indicates the execution state bits of the IT instruction.

The If-Then block contains up to four instructions following an IT instruction. Each instruction in the block is conditional. The conditions for

the instructions are either all the same, or some can be the inverse of others. See “IT” for more information.

T: Thumb State

The Cortex-M4 processor only supports the execution of instructions in Thumb state. The following can clear the T bit to 0:
— Instructions BLX, BX and POP{PC}
— Restoration from the stacked xPSR value on an exception return
— Bit[0] of the vector value on an exception entry or reset.

Attempting to execute instructions when the T bit is O results in a fault or lockup. See “Lockup” for more information.

12.4.1.12

Exception Mask Registers

The exception mask registers disable the handling of exceptions by the processor. Disable exceptions where they might impact on timing

critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS instruction to change the value of PRIMASK or

FAULTMASK. See “MRS”, “MSR”, and “CPS” for more information.

© 2022 Microchip Technology Inc.

DS60001719B-page 61

SAM4CM SERIES

12.41.13 Priority Mask Register
Name:PRIMASK

Access: Read/Write

Reset: 0x000000000

31 30 29 28 27 26 25 24

I |
23 22 21 20 19 18 17 16

I |
15 14 13 12 11 10 9 8

I |
7 6 5 4 3 2 1 0

| - PRIMASK |

The PRIMASK register prevents the activation of all exceptions with a configurable priority.

PRIMASK
0: No effect

1: Prevents the activation of all exceptions with a configurable priority.

DS60001719B-page 62

© 2022 Microchip Technology Inc.

SAM4CM SERIES

124114 Fault Mask Register
Name:FAULTMASK

Access: Read/Write

Reset: 0x000000000

31 30 29 28 27 26 25 24

I - |
23 22 21 20 19 18 17 16

I - |
15 14 13 12 11 10 9 8

I - |
7 6 5 4 3 2 1 0

| - FAULTMASK |

The FAULTMASK register prevents the activation of all exceptions except for Non-Maskable Interrupt (NMI).
FAULTMASK

0: No effect.

1: Prevents the activation of all exceptions except for NMI.

The processor clears the FAULTMASK bit to 0 on exit from any exception handler except the NMI handler.

© 2022 Microchip Technology Inc.

DS60001719B-page 63

SAM4CM SERIES

12.41.15 Base Priority Mask Register

Name:BASEPRI
Access: Read/Write
Reset: 0x000000000

31 30 29 28 27 26 25 24

I - |
23 22 21 20 19 18 17 16

I - |
15 14 13 12 11 10 9 8

I - |
7 6 5 4 3 2 1 0

BASEPRI

The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is set to a nonzero value, it prevents the

activation of all exceptions with same or lower priority level as the BASEPRI value.

BASEPRI
Priority mask bits:
0x0000: No effect

Nonzero: Defines the base priority for exception processing

The processor does not process any exception with a priority value greater than or equal to BASEPRI.

This field is similar to the priority fields in the interrupt priority registers. The processor implements only bits[7:4] of this field, bits[3:0] read
as zero and ignore writes. See “Interrupt Priority Registers” for more information. Remember that higher priority field values correspond

to lower exception priorities.

DS60001719B-page 64

© 2022 Microchip Technology Inc.

SAM4CM SERIES

12.4.1.16 Control Register
Name:CONTROL

Access: Read/Write

Reset: 0x000000000

31 30 29 28 27 26 25 24

I - |
23 22 21 20 19 18 17 16

I - |
15 14 13 12 11 10 9 8

I - |
7 6 5 4 3 2 1 0

| - FPCA SPSEL nPRIV |

The Control Register controls the stack used and the privilege level for software execution when the processor is in Thread mode and
indicates whether the FPU state is active.

FPCA: Floating-point Context Active

Indicates whether the floating-point context is currently active:

0: No floating-point context active.

1: Floating-point context active.

The Cortex-M4 uses this bit to determine whether to preserve the floating-point state when processing an exception.

SPSEL: Active Stack Pointer
Defines the current stack:

0: MSP is the current stack pointer.
1: PSP is the current stack pointer.

In Handler mode, this bit reads as zero and ignores writes. The Cortex-M4 updates this bit automatically on exception return.

nPRIV: Thread Mode Privilege Level
Defines the Thread mode privilege level:
0: Privileged.

1: Unprivileged.

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the Control Register when
in Handler mode. The exception entry and return mechanisms update the Control Register based on the EXC_RETURN value.

In an OS environment, ARM recommends that threads running in Thread mode use the process stack, and the kernel and exception han-
dlers use the main stack.

By default, the Thread mode uses the MSP. To switch the stack pointer used in Thread mode to the PSP, either:
* Use the MSR instruction to set the Active stack pointer bit to 1, see “MSR”, or
* Perform an exception return to Thread mode with the appropriate EXC_RETURN value, see Table 12-10.

Note: When changing the stack pointer, the software must use an ISB instruction immediately after the MSR instruction. This ensures
that instructions after the ISB execute using the new stack pointer. See “ISB”.

© 2022 Microchip Technology Inc. DS60001719B-page 65

SAM4CM SERIES

12.4.1.17 Exceptions and Interrupts

The Cortex-M4 processor supports interrupts and system exceptions. The processor and the Nested Vectored Interrupt Controller (NVIC)
prioritize and handle all exceptions. An exception changes the normal flow of software control. The processor uses the Handler mode to
handle all exceptions except for reset. See “Exception Entry” and “Exception Return” for more information.

The NVIC registers control interrupt handling. See “Nested Vectored Interrupt Controller (NVIC)” for more information.

12.4.1.18 Data Types
The processor supports the following data types:

+ 32-bit words

* 16-bit halfwords

+ 8-bit bytes

» The processor manages all data memory accesses as little-endian. Instruction memory and Private Peripheral Bus (PPB) accesses
are always little-endian. See “Memory Regions, Types and Attributes” for more information.

12.4.1.19 Cortex Microcontroller Software Interface Standard (CMSIS)
For a Cortex-M4 microcontroller system, the Cortex Microcontroller Software Interface Standard (CMSIS) defines:

* A common way to:
- Access peripheral registers
- Define exception vectors
* The names of:
- The registers of the core peripherals
- The core exception vectors
» A device-independent interface for RTOS kernels, including a debug channel.
The CMSIS includes address definitions and data structures for the core peripherals in the Cortex-M4 processor.

The CMSIS simplifies the software development by enabling the reuse of template code and the combination of CMSIS-compliant software
components from various middleware vendors. Software vendors can expand the CMSIS to include their peripheral definitions and access
functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions of the CMSIS functions that address the
processor core and the core peripherals.

Note: This document uses the register short names defined by the CMSIS. In a few cases, these differ from the architectural short
names that might be used in other documents.

The following sections give more information about the CMSIS:

+ Section 12.5.3 "Power Management Programming Hints”
» Section 12.6.2 "CMSIS Functions”
« Section 12.8.2.1 "NVIC Programming Hints”.

12.4.2 Memory Model

This section describes the processor memory map, the behavior of memory accesses, and the bit-banding features. The processor has
a fixed memory map that provides up to 4 GB of addressable memory.

DS60001719B-page 66 © 2022 Microchip Technology Inc.

SAM4CM SERIES

Figure 12-3: Memory Map
OXFFFFFFFF
Vendor-specific 511 MB
memory
0xE0100000
i i OXEQOFFFFF
Prlvatebpuesrlpheral 1.0 MB
0xEO000 0000
Ox DFFFFFFF
External device 1.0 GB
0xA0000000
OX9FFFFFFF
0x43FFFFFF External RAM 1.0GB
32 MB Bit-band alias
0x60000000
0x42000000 Ox5FFFFFFF
Ox400FFEFE ——— Peripheral 0.5GB
0x40000000 it-band region 0x40000000
O0x23FFFFFF Ox3FFFFFFF
32 MB Bit-band alias SRAM 0.5GB
0x22000000 — 8;522?:?:?:0!%
Code 0.5GB
0x200FFFFF - -
0x20000000 L MB Bit-band region 0x00000000

The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic operations to bit data, see “Bit-banding”.
The processor reserves regions of the Private peripheral bus (PPB) address range for core peripheral registers.

This memory mapping is generic to ARM Cortex-M4 products. To get the specific memory mapping of this product, refer to Section 8.
"Memories”.

12.4.2.1 Memory Regions, Types and Attributes

The memory map and the programming of the MPU split the memory map into regions. Each region has a defined memory type, and some
regions have additional memory attributes. The memory type and attributes determine the behavior of accesses to the region.

Memory Types

* Normal
The processor can re-order transactions for efficiency, or perform speculative reads.

* Device
The processor preserves transaction order relative to other transactions to Device or Strongly-ordered memory.

» Strongly-ordered
The processor preserves transaction order relative to all other transactions.

The different ordering requirements for Device and Strongly-ordered memory mean that the memory system can buffer a write to Device
memory, but must not buffer a write to Strongly-ordered memory.

Additional Memory Attributes

© 2022 Microchip Technology Inc. DS60001719B-page 67

SAM4CM SERIES

+ Shareable
For a shareable memory region, the memory system provides data synchronization between bus masters in a system with multiple
bus masters, for example, a processor with a DMA controller.
Strongly-ordered memory is always shareable.
If multiple bus masters can access a non-shareable memory region, the software must ensure data coherency between the bus
masters.

+ Execute Never (XN)
Means the processor prevents instruction accesses. A fault exception is generated only on execution of an instruction executed from
an XN region.

12.4.2.2 Memory System Ordering of Memory Accesses

For most memory accesses caused by explicit memory access instructions, the memory system does not guarantee that the order in which
the accesses complete matches the program order of the instructions, providing this does not affect the behavior of the instruction
sequence. Normally, if correct program execution depends on two memory accesses completing in program order, the software must insert
a memory barrier instruction between the memory access instructions, see “Software Ordering of Memory Accesses”.

However, the memory system does guarantee some ordering of accesses to Device and Strongly-ordered memory. For two memory
access instructions A1 and A2, if A1 occurs before A2 in program order, the ordering of the memory accesses is described below.

DS60001719B-page 68 © 2022 Microchip Technology Inc.

SAM4CM SERIES

Table 12-3: Ordering of the Memory Accesses Caused by Two Instructions
A2 Device Access
Strongly-
Normal Non- ordered
A1 Access shareable Shareable Access

Normal Access - - - -

Device access, non-shareable - < - <

Device access, shareable - - < <

Strongly-ordered access - < < <
Where:

— Means that the memory system does not guarantee the ordering of the accesses.

< Means that accesses are observed in program order, that is, A1 is always observed
before A2.

12.4.2.3 Behavior of Memory Accesses
The following table describes the behavior of accesses to each region in the memory map.

Table 12-4: Memory Access Behavior

Memory
Address Range Memory Region Type XN | Description
0x00000000—0x1FFFFEFFE | Code Normal(" B Executable region for program code. Data can also be

put here.

Executable region for data. Code can also be put here.
0x20000000-0x3FFFFFFF | SRAM Normal(") - This region includes bit band and bit band alias areas,
see Table 12-6.

0x40000000—0X5FFFFFFF | Peripheral Device () XN This region includes bit band and bit band alias areas,
see Table 12-6.
0x60000000-0x9FFFFFFF | External RAM Normal(| — | Executable region for data
0xA0000000-0xDFFFFFFF | External device Device(" XN | External Device memory
OXE0000000—0XEQOFFFFF | Private Peripheral Bus Strongly(—ﬂ XN This region includes the NVIC, system timer, and system
ordered control block.
0xE0100000-0xFFFFFFFF | Reserved Device(¥ | XN | Reserved

Note 1: See “Memory Regions, Types and Attributes” for more information.

The Code, SRAM, and external RAM regions can hold programs. However, ARM recommends that programs always use the Code region.
This is because the processor has separate buses that enable instruction fetches and data accesses to occur simultaneously.

The MPU can override the default memory access behavior described in this section. For more information, see “Memory Protection Unit
(MPU)".

Additional Memory Access Constraints For Shared Memory

When a system includes shared memory, some memory regions have additional access constraints, and some regions are subdivided,
as Table 12-5 shows.

© 2022 Microchip Technology Inc. DS60001719B-page 69

SAM4CM SERIES

Table 12-5: Memory Region Shareability Policies

Address Range Memory Region Memory Type Shareability
0x00000000-0x1FFFFFFF Code Normal () -
0x20000000-0x3FFFFFFF SRAM Normal () -
0x40000000-0x5FFFFFFF Peripheral Device(" -
0x60000000-0x7FFFFFFF
External RAM Normal (! —
0x80000000-0x9FFFFFFF
0xA0000000—-0xBFFFFFFF Shareable(")
External device Device(")
0xC0000000—0xDFFFFFFF Non-shareable (")
0xE0000000—0XEOOFFFFF Private Peripheral Bus Strongly-ordered(!) Shareable(")
0xE0100000-0xFFFFFFFF Vendor-specific device Device(! -

Note 1: See “Memory Regions, Types and Attributes” for more information.
Instruction Prefetch and Branch Prediction

The Cortex-M4 processor:

» Prefetches instructions ahead of execution
» Speculatively prefetches from branch target addresses.

12.4.2.4 Software Ordering of Memory Accesses

The order of instructions in the program flow does not always guarantee the order of the corresponding memory transactions. This is
because:

» The processor can reorder some memory accesses to improve efficiency, providing this does not affect the behavior of the instruc-
tion sequence.

* The processor has multiple bus interfaces

* Memory or devices in the memory map have different wait states

+ Some memory accesses are buffered or speculative.

“Memory System Ordering of Memory Accesses” describes the cases where the memory system guarantees the order of memory

accesses. Otherwise, if the order of memory accesses is critical, the software must include memory barrier instructions to force that order-
ing. The processor provides the following memory barrier instructions:

DMB

The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions complete before subsequent memory trans-
actions. See “DMB”.

DSB
The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transactions complete before subsequent instruc-
tions execute. See “DSB”.

1SB

The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory transactions is recognizable by subsequent
instructions. See “ISB”.

DS60001719B-page 70 © 2022 Microchip Technology Inc.

SAM4CM SERIES

MPU Programming
Use a DSB followed by an ISB instruction or exception return to ensure that the new MPU configuration is used by subsequent instructions.

12.4.2.5 Bit-banding

A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region. The bit-band regions occupy the lowest
1 MB of the SRAM and peripheral memory regions.

The memory map has two 32 MB alias regions that map to two 1 MB bit-band regions:

» Accesses to the 32 MB SRAM alias region map to the 1 MB SRAM bit-band region, as shown in Table 12-6.
* Accesses to the 32 MB peripheral alias region map to the 1 MB peripheral bit-band region, as shown in Table 12-7.

Table 12-6: SRAM Memory Bit-banding Regions

Address Range Memory Region Instruction and Data Accesses

Direct accesses to this memory range behave as SRAM memory accesses,

0x20000000-0x200FFFFF | SRAM bit-band region but this region is also bit-addressable through bit-band alias.

Data accesses to this region are remapped to bit-band region. A write
0x22000000-0x23FFFFFF | SRAM bit-band alias operation is performed as read-modify-write. Instruction accesses are not
remapped.

Table 12-7: Peripheral Memory Bit-banding Regions

Address Range Memory Region Instruction and Data Accesses

Direct accesses to this memory range behave as peripheral memory

0x40000000-0x400FFFFF | Peripheral bit-band alias accesses, but this region is also bit-addressable through bit-band alias.

Data accesses to this region are remapped to bit-band region. A write
0x42000000-0x43FFFFFF | Peripheral bit-band region | operation is performed as read-modify-write. Instruction accesses are not
permitted.

Note 1: A word access to the SRAM or peripheral bit-band alias regions map to a single bit in the SRAM or peripheral bit-band region.

2: Bit-band accesses can use byte, halfword, or word transfers. The bit-band transfer size matches the transfer size of the instruc-
tion making the bit-band access.

The following formula shows how the alias region maps onto the bit-band region:

bit word offset = (byte offset x 32) + (bit number x 4)
bit_word addr = bit_band base + bit_word offset

where:

* Bit word offset is the position of the target bit in the bit-band memory region.

* Bit word addr is the address of the word in the alias memory region that maps to the targeted bit.

* Bit_band_base is the starting address of the alias region.

* Byte offset is the number of the byte in the bit-band region that contains the targeted bit.

* Bit number is the bit position, 07, of the targeted bit.

Figure 12-4 shows examples of bit-band mapping between the SRAM bit-band alias region and the SRAM bit-band region:

* The alias word at 0x23FFFFEQ maps to bit[0] of the bit-band byte at 0x200FFFFF: 0x23FFFFEQ = 0x22000000 + (OxFFFFF*32) +
(0*4).

+ The alias word at 0x23FFFFFC maps to bit[7] of the bit-band byte at 0x200FFFFF: 0x23FFFFFC = 0x22000000 + (OxFFFFF*32) +
(7%4).

+ The alias word at 0x22000000 maps to bit[0] of the bit-band byte at 0x20000000: 0x22000000 = 0x22000000 + (0*32) + (0*4).

+ The alias word at 0x2200001C maps to bit[7] of the bit-band byte at 0x20000000: 0x2200001C = 0x22000000+ (0*32) + (7*4).

© 2022 Microchip Technology Inc. DS60001719B-page 71

SAM4CM SERIES

Figure 12-4:

Bit-band Mapping

32 MB alias region

| oxearrrrrc | oxaarrrrFs | oxesrrrFFa

0x23FFFFFO

0x23FFFFEC | Ox23FFFFES | Ox23FFFFE4 | 0x23FFFFEO |

I 0x2200001C I 0x22000018 0x22000014

0x22000010

0x2200000C 0x22000008 0x22000004 I 0x22000000 I

1 MB SRAM bit-band region

4‘7 6 5 4 3 2 1 9‘>7 6 5 4 3 2 1 07 6 5 4 3 2 1 07 6 5 4 3 2 10
[T T T
0x200FFFFF 0x200FFFFE 0x200FFFFD 0x200FFFFC
I — I — I — I —

°
°
°
7 6 5 4 3 2 1 07 6 5 4 3 2 1 07 6 5 4 3 2 1 0“3 6 5 4 3 2 1 q’;

| | |
0x20000003
| | |

| | |
0x20000002
| | |

| | |
0x20000001
| | |

| | |
0x20000000
| | |

Directly Accessing an Alias Region

Writing to a word in the alias region updates a single bit in the bit-band region.

Bit[0] of the value written to a word in the alias region determines the value written to the targeted bit in the bit-band region. Writing a value
with bit[0] set to 1 writes a 1 to the bit-band bit, and writing a value with bit[0] set to 0 writes a 0 to the bit-band bit.

Bits[31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as writing OxFF. Writing 0x00 has the same
effect as writing Ox0E.

Reading a word in the alias region:

+ 0x00000000 indicates that the targeted bit in the bit-band region is setto 0
+ 0x00000001 indicates that the targeted bit in the bit-band region is set to 1
Directly Accessing a Bit-band Region

“Behavior of Memory Accesses” describes the behavior of direct byte, halfword, or word accesses to the bit-band regions.

12.4.2.6

The processor views memory as a linear collection of bytes numbered in ascending order from zero. For example, bytes 0-3 hold the first
stored word, and bytes 4—7 hold the second stored word. “Little-endian Format” describes how words of data are stored in memory.

Memory Endianness

Little-endian Format

In little-endian format, the processor stores the least significant byte of a word at the lowest-numbered byte, and the most significant byte
at the highest-numbered byte. For example:

DS60001719B-page 72 © 2022 Microchip Technology Inc.

SAM4CM SERIES

Figure 12-5: Little-endian Format
Memory Register
7 0
31 2423 16 15 8 7 0
Address A BO |lIsbyte B3 B2 B1 BO
A+1 B1
A+2 B2
A+3 B3 [msbyte

12.4.2.7 Synchronization Primitives

The Cortex-M4 instruction set includes pairs of synchronization primitives. These provide a non-blocking mechanism that a thread or pro-
cess can use to obtain exclusive access to a memory location. The software can use them to perform a guaranteed read-modify-write
memory update sequence, or for a semaphore mechanism.

A pair of synchronization primitives comprises:

A Load-exclusive Instruction, used to read the value of a memory location, requesting exclusive access to that location.

A Store-Exclusive instruction, used to attempt to write to the same memory location, returning a status bit to a register. If this bit is:
+ 0: Itindicates that the thread or process gained exclusive access to the memory, and the write succeeds,

» 1: It indicates that the thread or process did not gain exclusive access to the memory, and no write is performed.

The pairs of Load-Exclusive and Store-Exclusive instructions are:

» The word instructions LDREX and STREX
* The halfword instructions LDREXH and STREXH
* The byte instructions LDREXB and STREXB.

The software must use a Load-Exclusive instruction with the corresponding Store-Exclusive instruction.
To perform an exclusive read-modify-write of a memory location, the software must:
1. Use a Load-Exclusive instruction to read the value of the location.
2. Update the value, as required.
3. Use a Store-Exclusive instruction to attempt to write the new value back to the memory location
4. Test the returned status bit. If this bit is:
0: The read-modify-write completed successfully.

1: No write was performed. This indicates that the value returned at step 1 might be out of date. The software must retry the read-
modify-write sequence.

The software can use the synchronization primitives to implement a semaphore as follows:
1. Use a Load-Exclusive instruction to read from the semaphore address to check whether the semaphore is free.
2. If the semaphore is free, use a Store-Exclusive instruction to write the claim value to the semaphore address.

3. If the returned status bit from step 2 indicates that the Store-Exclusive instruction succeeded then the software has claimed the
semaphore. However, if the Store-Exclusive instruction failed, another process might have claimed the semaphore after the soft-
ware performed the first step.

The Cortex-M4 includes an exclusive access monitor, that tags the fact that the processor has executed a Load-Exclusive instruction. If
the processor is part of a multiprocessor system, the system also globally tags the memory locations addressed by exclusive accesses
by each processor.

The processor removes its exclusive access tag if:

* It executes a CLREX instruction
* It executes a Store-Exclusive instruction, regardless of whether the write succeeds.
» An exception occurs. This means that the processor can resolve semaphore conflicts between different threads.

In a multiprocessor implementation:
» Executing a CLREX instruction removes only the local exclusive access tag for the processor

© 2022 Microchip Technology Inc. DS60001719B-page 73

SAM4CM SERIES

« Executing a Store-Exclusive instruction, or an exception, removes the local exclusive access tags, and all global exclusive access
tags for the processor.

For more information about the synchronization primitive instructions, see “LDREX and STREX” and “CLREX”.

12.4.2.8 Programming Hints for the Synchronization Primitives

ISO/IEC C cannot directly generate the exclusive access instructions. CMSIS provides intrinsic functions for generation of these instruc-
tions:

Table 12-8: CMSIS Functions for Exclusive Access Instructions
Instruction CMSIS Function
LDREX uint32_t _ LDREXW (uint32_t *addr)
LDREXH uint16_t _ LDREXH (uint16_t *addr)
LDREXB uint8_t __LDREXB (uint8_t *addr)
STREX uint32_t _ STREXW (uint32_t value, uint32_t *addr)
STREXH uint32_t _ STREXH (uint16_t value, uint16_t *addr)
STREXB uint32_t _ STREXB (uint8_t value, uint8_t *addr)
CLREX void __ CLREX (void)

The actual exclusive access instruction generated depends on the data type of the pointer passed to the intrinsic function. For example,
the following C code generates the required LDREXB operation:

_ldrex((volatile char *) OxFF);

1243 Exception Model

This section describes the exception model.

12.4.31 Exception States

Each exception is in one of the following states:
Inactive

The exception is not active and not pending.
Pending

The exception is waiting to be serviced by the processor.
An interrupt request from a peripheral or from software can change the state of the corresponding interrupt to pending.

DS60001719B-page 74 © 2022 Microchip Technology Inc.

SAM4CM SERIES

Active

An exception is being serviced by the processor but has not completed.
An exception handler can interrupt the execution of another exception handler. In this case, both exceptions are in the active state.
Active and Pending

The exception is being serviced by the processor and there is a pending exception from the same source.

12.4.3.2 Exception Types
The exception types are:
Reset
Reset is invoked on power up or a warm reset. The exception model treats reset as a special form of exception. When reset is asserted,

the operation of the processor stops, potentially at any point in an instruction. When reset is deasserted, execution restarts from the
address provided by the reset entry in the vector table. Execution restarts as privileged execution in Thread mode.

Non Maskable Interrupt (NMI)
A non maskable interrupt (NMI) can be signalled by a peripheral or triggered by software. This is the highest priority exception other than
reset. It is permanently enabled and has a fixed priority of -2.
NMls cannot be:

» Masked or prevented from activation by any other exception.
* Preempted by any exception other than Reset.
Hard Fault

A hard fault is an exception that occurs because of an error during exception processing, or because an exception cannot be managed
by any other exception mechanism. Hard Faults have a fixed priority of -1, meaning they have higher priority than any exception with con-
figurable priority.

Memory Management Fault (MemManage)
A Memory Management Fault is an exception that occurs because of a memory protection related fault. The MPU or the fixed memory

protection constraints determines this fault, for both instruction and data memory transactions. This fault is used to abort instruction
accesses to Execute Never (XN) memory regions, even if the MPU is disabled.

Bus Fault
A Bus Fault is an exception that occurs because of a memory related fault for an instruction or data memory transaction. This might be
from an error detected on a bus in the memory system.

Usage Fault

A Usage Fault is an exception that occurs because of a fault related to an instruction execution. This includes:

* An undefined instruction

* An illegal unaligned access

* An invalid state on instruction execution
* An error on exception return.

The following can cause a Usage Fault when the core is configured to report them:

* An unaligned address on word and halfword memory access
« A division by zero.

© 2022 Microchip Technology Inc. DS60001719B-page 75

SAM4CM SERIES

SVCall

A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS environment, applications can use SVC instruc-
tions to access OS kernel functions and device drivers.

PendSV

PendSV is an interrupt-driven request for system-level service. In an OS environment, use PendSV for context switching when no other
exception is active.

SysTick

A SysTick exception is an exception the system timer generates when it reaches zero. Software can also generate a SysTick exception.
In an OS environment, the processor can use this exception as system tick.

Interrupt (IRQ)

Alinterrupt, or IRQ, is an exception signalled by a peripheral, or generated by a software request. All interrupts are asynchronous to instruc-
tion execution. In the system, peripherals use interrupts to communicate with the processor.

Table 12-9: Properties of the Different Exception Types

Exception Irq Vector Address
Number(!) Number(!) Exception Type Priority or Offset(® Activation
1 - Reset -3, the highest | 0x00000004 Asynchronous
2 -14 NMI -2 0x00000008 Asynchronous
3 -13 Hard fault -1 0x0000000C -
4 12 Memory Configurable™ | 4,00000010 Synchronous
management fault
. 3 .
5 11 Bus fault ?onflgurable 0x00000014 Synchronous when precise,
asynchronous when imprecise
. 3
6 -10 Usage fault)Conflgurable 0x00000018 Synchronous
7-10 - - - Reserved -
X 3
11 -5 svcal Configurable™ | 440000002C Synchronous
12-13 - - - Reserved -
14 2 PendSV §3°"f'9”rab'e 0x00000038 Asynchronous
X 3
15 1 SysTick ?O”f'gurab'e 0x0000003C Asynchronous
16 and above | 0 and above Interrupt (IRQ) Configurable(4) 0x00000040 and above (®) Asynchronous

Note 1: To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative values for exceptions other
than interrupts. The IPSR returns the Exception number, see “Interrupt Program Status Register”.

See “Vector Table” for more information
See “System Handler Priority Registers”

See “Interrupt Priority Registers”

ahreN

Increasing in steps of 4.

For an asynchronous exception, other than reset, the processor can execute another instruction between when the exception is triggered
and when the processor enters the exception handler.

Privileged software can disable the exceptions that Table 12-9 shows as having configurable priority, see:

DS60001719B-page 76 © 2022 Microchip Technology Inc.

SAM4CM SERIES

+ “System Handler Control and State Register”
* “Interrupt Clear-enable Registers”.

For more information about hard faults, memory management faults, bus faults, and usage faults, see “Fault Handling”.

12.4.3.3 Exception Handlers
The processor handles exceptions using:
* Interrupt Service Routines (ISRs)
Interrupts IRQO to IRQ40 are the exceptions handled by ISRs.

+ Fault Handlers
Hard fault, memory management fault, usage fault, bus fault are fault exceptions handled by the fault handlers.

» System Handlers
NMI, PendSV, SVCall SysTick, and the fault exceptions are all system exceptions that are handled by system handlers.

12.4.3.4 Vector Table

The vector table contains the reset value of the stack pointer, and the start addresses, also called exception vectors, for all exception han-
dlers. Figure 12-6 shows the order of the exception vectors in the vector table. The least-significant bit of each vector must be 1, indicating
that the exception handler is Thumb code.

Figure 12-6: Vector Table
Exception number IRQ number Offset Vector
255 239 IRQ239
0x03FC
0x004C
18 2 IRQ2
0x0048
17 1 IRQ1
0x0044
16 0 IRQO
0x0040
15 -1 SysTick
0x003C
14 -2 PendSV
0x0038
13 Reserved
12 Reserved for Debug
11 -5 SVCall
0x002C
10
9
Reserved
8
7
6 -10 Usage fault
0x0018
5 -11 Bus fault
0x0014
4 -12 Memory management fault
0x0010
3 -13 Hard fault
0x000C
2 -14 NMI
0x0008
1 Reset
0x0004
Initial SP value

0x0000

On system reset, the vector table is fixed at address 0x00000000. Privileged software can write to the SCB_VTOR to relocate the vector
table start address to a different memory location, in the range 0x00000080 to Ox3FFFFF80, see “Vector Table Offset Register”.

12.4.3.5 Exception Priorities

As Table 12-9 shows, all exceptions have an associated priority, with:

» A lower priority value indicating a higher priority

© 2022 Microchip Technology Inc. DS60001719B-page 77

SAM4CM SERIES

« Configurable priorities for all exceptions except Reset, Hard fault and NMI.

If the software does not configure any priorities, then all exceptions with a configurable priority have a priority of 0. For information about
configuring exception priorities see “System Handler Priority Registers”, and “Interrupt Priority Registers”.

Note: Configurable priority values are in the range 0—15. This means that the Reset, Hard fault, and NMI exceptions, with fixed neg-
ative priority values, always have higher priority than any other exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has higher priority than
IRQ[0]. If both IRQ[1] and IRQ[O0] are asserted, IRQ[1] is processed before IRQ[0].

If multiple pending exceptions have the same priority, the pending exception with the lowest exception number takes precedence. For
example, if both IRQ[0] and IRQ[1] are pending and have the same priority, then IRQ[0] is processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a higher priority exception occurs. If an
exception occurs with the same priority as the exception being handled, the handler is not preempted, irrespective of the exception num-
ber. However, the status of the new interrupt changes to pending.

12.4.3.6 Interrupt Priority Grouping

To increase priority control in systems with interrupts, the NVIC supports priority grouping. This divides each interrupt priority register entry
into two fields:

* An upper field that defines the group priority
» A lower field that defines a subpriority within the group.

Only the group priority determines preemption of interrupt exceptions. When the processor is executing an interrupt exception handler,
another interrupt with the same group priority as the interrupt being handled does not preempt the handler.

If multiple pending interrupts have the same group priority, the subpriority field determines the order in which they are processed. If multiple
pending interrupts have the same group priority and subpriority, the interrupt with the lowest IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see “Application Interrupt and Reset Control
Register”.
12.4.3.7 Exception Entry and Return
Descriptions of exception handling use the following terms:
Preemption
When the processor is executing an exception handler, an exception can preempt the exception handler if its priority is higher than the
priority of the exception being handled. See “Interrupt Priority Grouping” for more information about preemption by an interrupt.
When one exception preempts another, the exceptions are called nested exceptions. See “Exception Entry” for more information.

DS60001719B-page 78 © 2022 Microchip Technology Inc.

SAM4CM SERIES

Return

This occurs when the exception handler is completed, and:
» There is no pending exception with sufficient priority to be serviced
* The completed exception handler was not handling a late-arriving exception.
The processor pops the stack and restores the processor state to the state it had before the interrupt occurred. See “Exception Return”
for more information.
Tail-chaining

This mechanism speeds up exception servicing. On completion of an exception handler, if there is a pending exception that meets the
requirements for exception entry, the stack pop is skipped and control transfers to the new exception handler.

Late-arriving

This mechanism speeds up preemption. If a higher priority exception occurs during state saving for a previous exception, the processor
switches to handle the higher priority exception and initiates the vector fetch for that exception. State saving is not affected by late arrival
because the state saved is the same for both exceptions. Therefore the state saving continues uninterrupted. The processor can accept
a late arriving exception until the first instruction of the exception handler of the original exception enters the execute stage of the proces-
sor. On return from the exception handler of the late-arriving exception, the normal tail-chaining rules apply.

Exception Entry
An Exception entry occurs when there is a pending exception with sufficient priority and either the processor is in Thread mode, or the
new exception is of a higher priority than the exception being handled, in which case the new exception preempts the original exception.
When one exception preempts another, the exceptions are nested.

Sufficient priority means that the exception has more priority than any limits set by the mask registers, see “Exception Mask Registers”.
An exception with less priority than this is pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception, the processor pushes informa-
tion onto the current stack. This operation is referred as stacking and the structure of eight data words is referred to as stack frame.

When using floating-point routines, the Cortex-M4 processor automatically stacks the architected floating-point state on exception entry.
Figure 12-7 shows the Cortex-M4 stack frame layout when floating-point state is preserved on the stack as the result of an interrupt or an
exception.

Note: Where stack space for floating-point state is not allocated, the stack frame is the same as that of ARMv7-M implementations
without an FPU. Figure 12-7 shows this stack frame also.

© 2022 Microchip Technology Inc. DS60001719B-page 79

SAM4CM SERIES

Figure 12-7: Exception Stack Frame

T Pre-IRQ top of stack

FPSCR
S15
S14
S13
S12
S11
S10

S9
S8
S7
S6
S5
S4
S3
s 1
S1 T L
SO ! {aligner} |
xPSR Decreasing xPSR

PC memory PC
R address R

R12 R12
R3 R3
R2 v R2
R1 R1
RO « IRQ top of stack RO « IRQ top of stack

Pre-IRQ top of stack

Exception frame with Exception frame without
floating-point storage floating-point storage

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. The alignment of the stack frame is controlled
via the STKALIGN bit of the Configuration Control Register (CCR).

The stack frame includes the return address. This is the address of the next instruction in the interrupted program. This value is restored
to the PC at exception return so that the interrupted program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the exception handler start address from the vector
table. When stacking is complete, the processor starts executing the exception handler. At the same time, the processor writes an
EXC_RETURN value to the LR. This indicates which stack pointer corresponds to the stack frame and what operation mode the processor
was in before the entry occurred.

If no higher priority exception occurs during the exception entry, the processor starts executing the exception handler and automatically
changes the status of the corresponding pending interrupt to active.

If another higher priority exception occurs during the exception entry, the processor starts executing the exception handler for this excep-
tion and does not change the pending status of the earlier exception. This is the late arrival case.

Exception Return

An Exception return occurs when the processor is in Handler mode and executes one of the following instructions to load the
EXC_RETURN value into the PC:

* An LDM or POP instruction that loads the PC

* An LDR instruction with the PC as the destination.

* A BXinstruction using any register.

EXC_RETURN is the value loaded into the LR on exception entry. The exception mechanism relies on this value to detect when the pro-
cessor has completed an exception handler. The lowest five bits of this value provide information on the return stack and processor mode.
Table 12-10 shows the EXC_RETURN values with a description of the exception return behavior.

DS60001719B-page 80 © 2022 Microchip Technology Inc.

SAM4CM SERIES

All EXC_RETURN values have bits[31:5] set to one. When this value is loaded into the PC, it indicates to the processor that the exception
is complete, and the processor initiates the appropriate exception return sequence.

Table 12-10: Exception Return Behavior

EXC_RETURN[31:0] Description

OXFFEFFFF1 Return to Handler mode, exception return uses non-floating-point state
from the MSP and execution uses MSP after return.

OXFFEEFEE9 Return.to Thread mode, exception return uses state from MSP and
execution uses MSP after return.

OxFEFEFFED Return.to Thread mode, exception return uses state from the PSP and
execution uses PSP after return.
Return to Handler mode, exception return uses floating-point-state from

OXFFFFFFE MSP and execution uses MSP after return.
Return to Thread mode, exception return uses floating-point state from

OXFFFFFFES MSP and execution uses MSP after return.

OxFFFEFFED Return to Thread mode, exception return uses floating-point state from PSP
and execution uses PSP after return.

12.4.3.8 Fault Handling

Faults are a subset of the exceptions, see “Exception Model”. The following generate a fault:

* A bus error on:

- An instruction fetch or vector table load

- A data access

» An internally-detected error such as an undefined instruction
» An attempt to execute an instruction from a memory region marked as Non-Executable (XN).
A privilege violation or an attempt to access an unmanaged region causing an MPU fault.

Fault Types

Table 12-11 shows the types of fault, the handler used for the fault, the corresponding fault status register, and the register bit that indicates
that the fault has occurred. See “Configurable Fault Status Register” for more information about the fault status registers.

© 2022 Microchip Technology Inc.

DS60001719B-page 81

SAM4CM SERIES

Table 12-11: Faults
Fault Handler Bit Name Fault Status Register
Bus error on a vector read VECTTBL
Hard fault “Hard Fault Status Register”
Fault escalated to a hard fault FORCED
MPU or default memory map mismatch: - -
on instruction access IAccvioL()
on data access Memory DACCVIOL®)
: . . management “MMFSR: Memory Management Fault Status
during exception stacking fault MSTKERR Subregister’
during exception unstacking MUNSTKERR
during lazy floating-point state preservation MLSPERR®)
Bus error: - -
during exception stacking STKERR
during exception unstacking UNSTKERR
during instruction prefetch Bus fault IBUSERR
“BFSR: Bus Fault Status Subregister”
during lazy floating-point state preservation LSPERR(®)
Precise data bus error PRECISERR
Imprecise data bus error IMPRECISERR
Attempt to access a coprocessor NOCP
Undefined instruction UNDEFINSTR
Attempt to enter an invalid instruction set state INVSTATE
Usage fault “UFSR: Usage Fault Status Subregister”
Invalid EXC_RETURN value INVPC
lllegal unaligned load or store UNALIGNED
Divide By 0 DIVBYZERO

Note 1: Occurs on an access to an XN region even if the processor does not include an MPU or the MPU is disabled.

2: Attempt to use an instruction set other than the Thumb instruction set, or return to a non load/store-multiple instruction with
ICI continuation.

3: Only present in a Cortex-M4F device

Fault Escalation and Hard Faults

All faults exceptions except for hard fault have configurable exception priority, see “System Handler Priority Registers”. The software can
disable the execution of the handlers for these faults, see “System Handler Control and State Register”.

Usually, the exception priority, together with the values of the exception mask registers, determines whether the processor enters the fault
handler, and whether a fault handler can preempt another fault handler, as described in “Exception Model”.

In some situations, a fault with configurable priority is treated as a hard fault. This is called priority escalation, and the fault is described

as escalated to hard fault. Escalation to hard fault occurs when:

A fault handler causes the same kind of fault as the one it is servicing. This escalation to hard fault occurs because a fault handler
cannot preempt itself; it must have the same priority as the current priority level.

« A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is because the handler for the new fault
cannot preempt the currently executing fault handler.

» An exception handler causes a fault for which the priority is the same as or lower than the currently executing exception.
+ A fault occurs and the handler for that fault is not enabled.

DS60001719B-page 82 © 2022 Microchip Technology Inc.

SAM4CM SERIES

If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not escalate to a hard fault. This means that
if a corrupted stack causes a fault, the fault handler executes even though the stack push for the handler failed. The fault handler operates
but the stack contents are corrupted.

Note: Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any exception other than Reset, NMI,
or another hard fault.

Fault Status Registers and Fault Address Registers

The fault status registers indicate the cause of a fault. For bus faults and memory management faults, the fault address register indicates
the address accessed by the operation that caused the fault, as shown in Table 12-12.

Table 12-12: Fault Status and Fault Address Registers

Status Register Address Register
Handler Name Name Register Description
Hard fault SCB_HFSR - “Hard Fault Status Register”
“‘MMFSR: Memory Management Fault Status Subregister”
Memory MMFSR SCB_MMFAR y J , 9
management fault “MemManage Fault Address Register”
“BFSR: Bus Fault Status Subregister”
Bus fault BFSR SCB_BFAR)
“Bus Fault Address Register”
Usage fault UFSR - “UFSR: Usage Fault Status Subregister”

Lockup
The processor enters a lockup state if a hard fault occurs when executing the NMI or hard fault handlers. When the processor is in lockup
state, it does not execute any instructions. The processor remains in lockup state until either:

* ltis reset
* An NMI occurs
« Itis halted by a debugger.

Note: If the lockup state occurs from the NMI handler, a subsequent NMI does not cause the processor to leave the lockup state.

© 2022 Microchip Technology Inc. DS60001719B-page 83

SAM4CM SERIES

12.5 Power Management

The Cortex-M4 processor sleep modes reduce the power consumption:

» Sleep mode stops the processor clock
» Deep sleep mode stops the system clock and switches off the PLL and flash memory.

The SLEEPDEEP bit of the SCR selects which sleep mode is used; see “System Control Register”.

This section describes the mechanisms for entering sleep mode, and the conditions for waking up from sleep mode.

12.5.1 Entering Sleep Mode

This section describes the mechanisms software can use to put the processor into sleep mode.

The system can generate spurious wakeup events, for example a debug operation wakes up the processor. Therefore, the software must
be able to put the processor back into sleep mode after such an event. A program might have an idle loop to put the processor back to
sleep mode.

12.5.1.1 Wait for Interrupt

The wait for interrupt instruction, WFI, causes immediate entry to sleep mode. When the processor executes a WFI instruction it stops
executing instructions and enters sleep mode. See “WFI” for more information.

12.5.1.2 Wait for Event

The wait for event instruction, WFE, causes entry to sleep mode conditional on the value of an one-bit event register. When the processor
executes a WFE instruction, it checks this register:

« If the register is 0, the processor stops executing instructions and enters sleep mode
« If the register is 1, the processor clears the register to 0 and continues executing instructions without entering sleep mode.

See “WFE” for more information.

12.5.1.3 Sleep-on-exit

If the SLEEPONEXIT bit of the SCR is set to 1 when the processor completes the execution of an exception handler, it returns to Thread
mode and immediately enters sleep mode. Use this mechanism in applications that only require the processor to run when an exception
occurs.

12.5.2 Wakeup from Sleep Mode

The conditions for the processor to wake up depend on the mechanism that cause it to enter sleep mode.

12.5.2.1 Wakeup from WFI or Sleep-on-exit
Normally, the processor wakes up only when it detects an exception with sufficient priority to cause exception entry.

Some embedded systems might have to execute system restore tasks after the processor wakes up, and before it executes an interrupt
handler. To achieve this, set the PRIMASK bit to 1 and the FAULTMASK bit to 0. If an interrupt arrives that is enabled and has a higher
priority than the current exception priority, the processor wakes up but does not execute the interrupt handler until the processor sets PRI-
MASK to zero. For more information about PRIMASK and FAULTMASK, see “Exception Mask Registers”.

DS60001719B-page 84 © 2022 Microchip Technology Inc.

SAM4CM SERIES

12.5.2.2 Wakeup from WFE
The processor wakes up if:

« It detects an exception with sufficient priority to cause an exception entry

« |t detects an external event signal. See “External Event Input”

» In a multiprocessor system, another processor in the system executes an SEV instruction.

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an event and wakes up the processor, even

if the interrupt is disabled or has insufficient priority to cause an exception entry. For more information about the SCR, see “System Control
Register”.

12.5.2.3 External Event Input

The processor provides an external event input signal. Peripherals can drive this signal, either to wake the processor from WFE, or to set
the internal WFE event register to 1 to indicate that the processor must not enter sleep mode on a later WFE instruction. See “Wait for
Event” for more information.

12.5.3 Power Management Programming Hints

ISO/IEC C cannot directly generate the WFI and WFE instructions. The CMSIS provides the following functions for these instructions:

void _ WFE(void) // Wait for Event
void _ WFI(void) // Wait for Interrupt

© 2022 Microchip Technology Inc. DS60001719B-page 85

SAM4CM SERIES

12.6 Cortex-M4 Instruction Set

12.6.1 Instruction Set Summary
The processor implements a version of the Thumb instruction set. Table 12-13 lists the supported instructions.

» Angle brackets, <>, enclose alternative forms of the operand
» Braces, {}, enclose optional operands

» The Operands column is not exhaustive
» Op2 is a flexible second operand that can be either a register or a constant
» Most instructions can use an optional condition code suffix.

For more information on the instructions and operands, see the instruction descriptions.

Table 12-13: Cortex-M4 Instructions

Mnemonic Operands Description Flags
ADC, ADCS {Rd,} Rn, Op2 Add with Carry N,Z,CV
ADD, ADDS {Rd,} Rn, Op2 Add N,Z,C\V
ADD, ADDW {Rd,} Rn, #imm12 Add N,Z,C.V
ADR Rd, label Load PC-relative address -

AND, ANDS {Rd,} Rn, Op2 Logical AND N,z,C
ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right N,Z,C

B label Branch -

BFC Rd, #lsb, #width Bit Field Clear -

BFI Rd, Rn, #lsb, #width Bit Field Insert -

BIC, BICS {Rd,} Rn, Op2 Bit Clear N,z,C
BKPT #imm Breakpoint -

BL label Branch with Link -

BLX Rm Branch indirect with Link -

BX Rm Branch indirect -
CBNz Rn, label Compare and Branch if Non Zero -

CBzZ Rn, label Compare and Branch if Zero —
CLREX - Clear Exclusive -

CLz Rd, Rm Count leading zeros -

CMN Rn, Op2 Compare Negative N,Z,C.V
CMP Rn, Op2 Compare N,Z,C\V
CPSID i Change Processor State, Disable Interrupts -
CPSIE i Change Processor State, Enable Interrupts -

DMB - Data Memory Barrier -

DSB - Data Synchronization Barrier -

EOR, EORS {Rd,} Rn, Op2 Exclusive OR N,Z,C
ISB - Instruction Synchronization Barrier -

IT - If-Then condition block -

LDM Rn{!}, reglist Load Multiple registers, increment after -

DS60001719B-page 86

© 2022 Microchip Technology Inc.

SAM4CM SERIES

Table 12-13: Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
LDMDB, LDMEA Rn{!}, reglist Load Multiple registers, decrement before -
LDMFD, LDMIA Rn{!}, reglist Load Multiple registers, increment after -
LDR Rt, [Rn, #offset] Load Register with word -
LDRB, LDRBT Rt, [Rn, #offset] Load Register with byte -
LDRD Rt, Rt2, [Rn, #offset] Load Register with two bytes -
LDREX Rt, [Rn, #offset] Load Register Exclusive -
LDREXB Rt, [Rn] Load Register Exclusive with byte -
LDREXH Rt, [Rn] Load Register Exclusive with halfword -
LDRH, LDRHT Rt, [Rn, #offset] Load Register with halfword -
LDRSB, DRSBT Rt, [Rn, #offset] Load Register with signed byte -
LDRSH, LDRSHT Rt, [Rn, #offset] Load Register with signed halfword -
LDRT Rt, [Rn, #offset] Load Register with word -
LSL, LSLS Rd, Rm, <Rs|#n> Logical Shift Left N,Z,C
LSR, LSRS Rd, Rm, <Rs|#n> Logical Shift Right N,Z,C
MLA Rd, Rn, Rm, Ra Multiply with Accumulate, 32-bit result -
MLS Rd, Rn, Rm, Ra Multiply and Subtract, 32-bit result -
MOV, MOVS Rd, Op2 Move N,Z,C
MOVT Rd, #imm16 Move Top -
MOVW, MOV Rd, #imm16 Move 16-bit constant N,Z,C
MRS Rd, spec_reg Move from special register to general register -
MSR spec_reg, Rm Move from general register to special register N,Z,CV
MUL, MULS {Rd,} Rn, Rm Multiply, 32-bit result N,Z
MVN, MVNS Rd, Op2 Move NOT N,Z,C
NOP - No Operation -
ORN, ORNS {Rd,} Rn, Op2 Logical OR NOT N,z,C
ORR, ORRS {Rd,} Rn, Op2 Logical OR N,Z,C
PKHTB, PKHBT {Rd,} Rn, Rm, Op2 Pack Halfword -
POP reglist Pop registers from stack -
PUSH reglist Push registers onto stack -
QADD {Rd,} Rn, Rm Saturating double and Add Q
QADD16 {Rd,} Rn, Rm Saturating Add 16 -
QADDS8 {Rd,} Rn, Rm Saturating Add 8 -
QASX {Rd,} Rn, Rm Saturating Add and Subtract with Exchange -
QDADD {Rd,} Rn, Rm Saturating Add Q
QDSUB {Rd,} Rn, Rm Saturating double and Subtract Q
QSAX {Rd,} Rn, Rm Saturating Subtract and Add with Exchange -

© 2022 Microchip Technology Inc.

DS60001719B-page 87

SAM4CM SERIES

Table 12-13: Cortex-M4 Instructions (Continued)
Mnemonic Operands Description Flags
QSuUB {Rd,} Rn, Rm Saturating Subtract Q
QSUB16 {Rd,} Rn, Rm Saturating Subtract 16 -
QSUBS8 {Rd,} Rn, Rm Saturating Subtract 8 -
RBIT Rd, Rn Reverse Bits -
REV Rd, Rn Reverse byte order in a word -
REV16 Rd, Rn Reverse byte order in each halfword -
REVSH Rd, Rn Reverse byte order in bottom halfword and sign extend -
ROR, RORS Rd, Rm, <Rs|#n> Rotate Right N,Z,C
RRX, RRXS Rd, Rm Rotate Right with Extend N,Z,C
RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract N,Z,CV
SADD16 {Rd,} Rn, Rm Signed Add 16 GE
SADD8 {Rd,} Rn, Rm Signed Add 8 and Subtract with Exchange GE
SASX {Rd,} Rn, Rm Signed Add GE
SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry N,Z,C,V
SBFX Rd, Rn, #Isb, #width Signed Bit Field Extract -
SDIV {Rd,} Rn, Rm Signed Divide -
SEL {Rd,} Rn, Rm Select bytes -
SEV - Send Event -
SHADD16 {Rd,} Rn, Rm Signed Halving Add 16 -
SHADDS {Rd,} Rn, Rm Signed Halving Add 8 -
SHASX {Rd,} Rn, Rm Signed Halving Add and Subtract with Exchange -
SHSAX {Rd,} Rn, Rm Signed Halving Subtract and Add with Exchange -
SHSUB16 {Rd,} Rn, Rm Signed Halving Subtract 16 -
SHSUBS8 {Rd,} Rn, Rm Signed Halving Subtract 8 -
gmtﬁ.?g SS,\'\AALL:.I_BTT Rd, Rn, Rm, Ra Signed Multiply Accumulate Long (halfwords) Q
SMLAD, SMLADX Rd, Rn, Rm, Ra Signed Multiply Accumulate Dual Q
SMLAL RdLo, RdHi, Rn, Rm Signed Multiply with Accumulate (32 x 32 + 64), 64-bit result -
gmtﬁ:ﬁg SSI{\AAII::II__'I?'IT RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long, halfwords -
SMLALD, SMLALDX RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long Dual -
SMLAWB, SMLAWT Rd, Rn, Rm, Ra Signed Multiply Accumulate, word by halfword Q
SMLSD Rd, Rn, Rm, Ra Signed Multiply Subtract Dual Q
SMLSLD RdLo, RdHi, Rn, Rm Signed Multiply Subtract Long Dual
SMMLA Rd, Rn, Rm, Ra Signed Most significant word Multiply Accumulate -
SMMLS, SMMLR Rd, Rn, Rm, Ra Signed Most significant word Multiply Subtract -
SMMUL, SMMULR {Rd,} Rn, Rm Signed Most significant word Multiply -

DS60001719B-page 88

© 2022 Microchip Technology Inc.

SAM4CM SERIES

Table 12-13: Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
SMUAD {Rd,} Rn, Rm Signed dual Multiply Add Q
gmgt'?BB SSI\'\//IlllJJIL-'I'B'IT {Rd,} Rn, Rm Signed Multiply (halfwords) -
SMULL RdLo, RdHi, Rn, Rm Signed Multiply (32 x 32), 64-bit result -
SMULWB, SMULWT {Rd,} Rn, Rm Signed Multiply word by halfword -
SMUSD, SMUSDX {Rd,} Rn, Rm Signed dual Multiply Subtract -
SSAT Rd, #n, Rm {,shift #s} Signed Saturate Q
SSAT16 Rd, #n, Rm Signed Saturate 16 Q
SSAX {Rd,} Rn, Rm Signed Subtract and Add with Exchange GE
SSUB16 {Rd,} Rn, Rm Signed Subtract 16 -
SSUBS8 {Rd,} Rn, Rm Signed Subtract 8 -
STM Rn{!}, reglist Store Multiple registers, increment after -
STMDB, STMEA Rn{1}, reglist Store Multiple registers, decrement before -
STMFD, STMIA Rn{"}, reglist Store Multiple registers, increment after -
STR Rt, [Rn, #offset] Store Register word -
STRB, STRBT Rt, [Rn, #offset] Store Register byte -
STRD Rt, Rt2, [Rn, #offset] Store Register two words -
STREX Rd, Rt, [Rn, #offset] Store Register Exclusive -
STREXB Rd, Rt, [Rn] Store Register Exclusive byte -
STREXH Rd, Rt, [Rn] Store Register Exclusive halfword -
STRH, STRHT Rt, [Rn, #offset] Store Register halfword -
STRT Rt, [Rn, #offset] Store Register word -
SUB, SUBS {Rd,} Rn, Op2 Subtract N,Z,C.V
SUB, SUBW {Rd,} Rn, #imm12 Subtract N,zZ,CV
SvC #imm Supervisor Call -
SXTAB {Rd,} Rn, Rm,{,ROR #} | Extend 8 bits to 32 and add -
SXTAB16 {Rd,} Rn, Rm,{,ROR #} | Dual extend 8 bits to 16 and add -
SXTAH {Rd,} Rn, Rm{,ROR #} | Extend 16 bits to 32 and add -
SXTB16 {Rd,} Rm {,ROR #n} Signed Extend Byte 16 -
SXTB {Rd,} Rm {,ROR #n} Sign extend a byte -
SXTH {Rd,} Rm {,ROR #n} Sign extend a halfword -
TBB [Rn, Rm] Table Branch Byte -
TBH [Rn, Rm, LSL #1] Table Branch Halfword -
TEQ Rn, Op2 Test Equivalence N,Z,C
TST Rn, Op2 Test N,Z,C
UADD16 {Rd,} Rn, Rm Unsigned Add 16 GE
UADDS8 {Rd,} Rn, Rm Unsigned Add 8 GE

© 2022 Microchip Technology Inc.

DS60001719B-page 89

SAM4CM SERIES

Table 12-13: Cortex-M4 Instructions (Continued)
Mnemonic Operands Description Flags
USAX {Rd,} Rn, Rm Unsigned Subtract and Add with Exchange GE
UHADD16 {Rd,} Rn, Rm Unsigned Halving Add 16 -
UHADDS8 {Rd,} Rn, Rm Unsigned Halving Add 8 -
UHASX {Rd,} Rn, Rm Unsigned Halving Add and Subtract with Exchange -
UHSAX {Rd,} Rn, Rm Unsigned Halving Subtract and Add with Exchange -
UHSUB16 {Rd,} Rn, Rm Unsigned Halving Subtract 16 -
UHSUBS8 {Rd,} Rn, Rm Unsigned Halving Subtract 8 -
UBFX Rd, Rn, #lIsb, #width Unsigned Bit Field Extract -
ubDIV {Rd,} Rn, Rm Unsigned Divide -
UMAAL RdLo, RdHi, Rn, Rm ;J:_sbiigzr;ggul\lqultiply Accumulate Accumulate Long (32 x 32 +32+32), |
UMLAL RdLo, RdHi, Rn, Rm Unsigned Multiply with Accumulate (32 x 32 + 64), 64-bit result -
UMULL RdLo, RdHi, Rn, Rm Unsigned Multiply (32 x 32), 64-bit result -
UQADD16 {Rd,} Rn, Rm Unsigned Saturating Add 16 -
UQADDS8 {Rd,} Rn, Rm Unsigned Saturating Add 8 -
UQASX {Rd,} Rn, Rm Unsigned Saturating Add and Subtract with Exchange -
UQSAX {Rd,} Rn, Rm Unsigned Saturating Subtract and Add with Exchange -
UQSUB16 {Rd,} Rn, Rm Unsigned Saturating Subtract 16 -
uQSuBs {Rd,} Rn, Rm Unsigned Saturating Subtract 8 -
USADS8 {Rd,} Rn, Rm Unsigned Sum of Absolute Differences -
USADAS {Rd,} Rn, Rm, Ra Unsigned Sum of Absolute Differences and Accumulate -
USAT Rd, #n, Rm {,shift #s} Unsigned Saturate Q
USAT16 Rd, #n, Rm Unsigned Saturate 16 Q
UASX {Rd,} Rn, Rm Unsigned Add and Subtract with Exchange GE
USUB16 {Rd,} Rn, Rm Unsigned Subtract 16 GE
UsSuB8 {Rd,} Rn, Rm Unsigned Subtract 8 GE
UXTAB {Rd,} Rn, Rm,{,ROR #} | Rotate, extend 8 bits to 32 and Add -
UXTAB16 {Rd,} Rn, Rm{,ROR #} | Rotate, dual extend 8 bits to 16 and Add -
UXTAH {Rd,} Rn, Rm,{,ROR #} | Rotate, unsigned extend and Add Halfword -
UXTB {Rd,} Rm {,ROR #n} Zero extend a byte -
UXTB16 {Rd,} Rm {,ROR #n} Unsigned Extend Byte 16 -
UXTH {Rd,} Rm {,ROR #n} Zero extend a halfword -
VABS.F32 Sd, Sm Floating-point Absolute -
VADD.F32 {8d,} Sn, Sm Floating-point Add -
VCMP.E32 Sd, <Sm | #0.0> g:(;nzpearroe two floating-point registers, or one floating-point register FPSCR
VCMPE.F32 Sd, <Sm | #0.0> Compare two floating-point registers, or one floating-point register FPSCR

and zero with Invalid Operation check

DS60001719B-page 90

© 2022 Microchip Technology Inc.

SAM4CM SERIES

Table 12-13: Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
VCVT.S32.F32 Sd, Sm Convert between floating-point and integer -
VCVT.S16.F32 Sd, Sd, #fbits Convert between floating-point and fixed point -
VCVTR.S32.F32 Sd, Sm Convert between floating-point and integer with rounding -
VCVT<B|H>.F32.F16 Sd, Sm Converts half-precision value to single-precision -
VCVTT<B|T>.F32.F16 | Sd, Sm Converts single-precision register to half-precision -
VDIV.F32 {Sd,} Sn, Sm Floating-point Divide -
VFMA.F32 {Sd,} Sn, Sm Floating-point Fused Multiply Accumulate -
VFNMA.F32 {Sd,} Sn, Sm Floating-point Fused Negate Multiply Accumulate -
VFMS.F32 {8d,} Sn, Sm Floating-point Fused Multiply Subtract -
VFNMS.F32 {Sd,} Sn, Sm Floating-point Fused Negate Multiply Subtract -
VLDM.F<32|64> Rn{!}, list Load Multiple extension registers -
VLDR.F<32|64> <Dd|Sd>, [Rn] Load an extension register from memory -
VLMA.F32 {Sd,} Sn, Sm Floating-point Multiply Accumulate -
VLMS.F32 {Sd,} Sn, Sm Floating-point Multiply Subtract -
VMOV.F32 Sd, #imm Floating-point Move immediate -
VMOV Sd, Sm Floating-point Move register -
VMOV Sn, Rt Copy ARM core register to single precision -
VMOV Sm, Sm1, Rt, Rt2 Copy 2 ARM core registers to 2 single precision -
VMOV Dd[x], Rt Copy ARM core register to scalar -
VMOV Rt, Dn[x] Copy scalar to ARM core register -
VMRS Rt, FPSCR Move FPSCR to ARM core register or APSR N,Z,C,V
VMSR FPSCR, Rt Move to FPSCR from ARM Core register FPSCR
VMUL.F32 {Sd,} Sn, Sm Floating-point Multiply -
VNEG.F32 Sd, Sm Floating-point Negate -
VNMLA.F32 Sd, Sn, Sm Floating-point Multiply and Add -
VNMLS.F32 Sd, Sn, Sm Floating-point Multiply and Subtract -
VNMUL {8d,} Sn, Sm Floating-point Multiply -
VPOP list Pop extension registers -
VPUSH list Push extension registers -
VSQRT.F32 Sd, Sm Calculates floating-point Square Root -
VSTM Rn{1}, list Floating-point register Store Multiple -
VSTR.F<32|64> Sd, [Rn] Stores an extension register to memory -
VSUB.F<32|64> {8d,} Sn, Sm Floating-point Subtract -
WFE - Wait For Event -
WFI - Wait For Interrupt -

© 2022 Microchip Technology Inc.

DS60001719B-page 91

SAM4CM SERIES

12.6.2 CMSIS Functions

ISO/IEC cannot directly access some Cortex-M4 instructions. This section describes intrinsic functions that can generate these instruc-
tions, provided by the CMIS and that might be provided by a C compiler. If a C compiler does not support an appropriate intrinsic function,
the user might have to use inline assembler to access some instructions.

The CMSIS provides the following intrinsic functions to generate instructions that ISO/IEC C code cannot directly access:

Table 12-14: CMSIS Functions to Generate some Cortex-M4 Instructions
Instruction CMSIS Function
CPSIE | void __enable_irg(void)
CPSID | void __disable_irg(void)
CPSIEF void __enable_fault_irg(void)
CPSID F void __disable_fault_irg(void)
ISB void __ISB(void)
DSB void __DSB(void)
DMB void __DMB(void)
REV uint32_t _ REV(uint32_t int value)
REV16 uint32_t _ REV16(uint32_t int value)
REVSH uint32_t _ REVSH(uint32_t int value)
RBIT uint32_t __ RBIT(uint32_t int value)
SEV void __SEV(void)
WFE void __ WFE(void)
WFI void __ WFI(void)

The CMSIS also provides a number of functions for accessing the special registers using MRS and MSR instructions:

Table 12-15: CMSIS Intrinsic Functions to Access the Special Registers
Special Register Access CMSIS Function
Read uint32_t _ get PRIMASK (void)
PRIMASK
Write void __set PRIMASK (uint32_t value)
Read uint32_t _ get FAULTMASK (void
FAULTMASK
Write void __set FAULTMASK (uint32_t value)
Read uint32_t __get BASEPRI (void)
BASEPRI
Write void __set BASEPRI (uint32_t value)
Read uint32_t __get CONTROL (void)
CONTROL
Write void __set CONTROL (uint32_t value)
Read uint32_t __get_ MSP (void)
MSP
Write void __set MSP (uint32_t TopOfMainStack)
Read uint32_t __get PSP (void)
PSP
Write void __set PSP (uint32_t TopOfProcStack)

DS60001719B-page 92

© 2022 Microchip Technology Inc.

SAM4CM SERIES

12.6.3 Instruction Descriptions

12.6.3.1 Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific parameter. Instructions act on the operands and
often store the result in a destination register. When there is a destination register in the instruction, it is usually specified before the oper-
ands.

Operands in some instructions are flexible, can either be a register or a constant. See “Flexible Second Operand”.

12.6.3.2 Restrictions when Using PC or SP

Many instructions have restrictions on whether the Program Counter (PC) or Stack Pointer (SP) for the operands or destination register
can be used. See instruction descriptions for more information.

Note: Bit[0] of any address written to the PC with a BX, BLX, LDM, LDR, or POP instruction must be 1 for correct execution, because
this bit indicates the required instruction set, and the Cortex-M4 processor only supports Thumb instructions.

12.6.3.3 Flexible Second Operand

Many general data processing instructions have a flexible second operand. This is shown as Operand2 in the descriptions of the syntax
of each instruction.

Operand?2 can be a:
» “Constant”
+ “Register with Optional Shift”
Constant
Specify an Operand2 constant in the form:
#constant
where constant can be:

* Any constant that can be produced by shifting an 8-bit value left by any number of bits within a 32-bit word
* Any constant of the form 0x00XYO00XY

+ Any constant of the form 0xXY00XY00

» Any constant of the form OxXYXYXYXY.

Note: In the constants shown above, X and Y are hexadecimal digits.

In addition, in a small number of instructions, constant can take a wider range of values. These are described in the individual instruction
descriptions.

When an Operand?2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag
is updated to bit[31] of the constant, if the constant is greater than 255 and can be produced by shifting an 8-bit value. These instructions
do not affect the carry flag if Operand?2 is any other constant.

Instruction Substitution
The assembler might be able to produce an equivalent instruction in cases where the user specifies a constant that is not permitted. For
example, an assembler might assemble the instruction CMP Rd, #0xFFFFFFFE as the equivalent instruction CMN Rd, #0x2.

Register with Optional Shift

Specify an Operand2 register in the form:

Rm {, shift}

where:

Rmis the register holding the data for the second operand.
shiftis an optional shift to be applied to Rm. It can be one of:
ASR #narithmetic shift right n bits, 1 <n <32.

LSL #nlogical shift left n bits, 1 < n < 31.

LSR #nlogical shift right n bits, 1 < n < 32.

ROR #nrotate right n bits, 1 < n < 31.

© 2022 Microchip Technology Inc. DS60001719B-page 93

SAM4CM SERIES

RRXrotate right one bit, with extend.
-if omitted, no shift occurs, equivalent to LSL #0.
If the user omits the shift, or specifies LSL #0, the instruction uses the value in Rm.

If the user specifies a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used by the instruction. However, the
contents in the register Rm remains unchanged. Specifying a register with shift also updates the carry flag when used with certain instruc-
tions. For information on the shift operations and how they affect the carry flag, see “Flexible Second Operand”.

12.6.3.4 Shift Operations

Register shift operations move the bits in a register left or right by a specified number of bits, the shift length. Register shift can be per-
formed:

« Directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a destination register

» During the calculation of Operand? by the instructions that specify the second operand as a register with shift. See “Flexible Second
Operand”. The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction. If the shift length is 0, no shift occurs. Register shift operations
update the carry flag except when the specified shift length is 0. The following subsections describe the various shift operations and how
they affect the carry flag. In these descriptions, Rm is the register containing the value to be shifted, and n is the shift length.

ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register, Rm, to the right by n places, into the right-hand 32-n bits of the
result. And it copies the original bit[31] of the register into the left-hand n bits of the result. See Figure 12-8.

The ASR #n operation can be used to divide the value in the register Rm by 2", with the result being rounded towards negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS,
BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the register Rm.

* If nis 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
» If nis 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 12-8: ASR #3
Carry

31 5(413]12(1]0

AEEE (L=

LSR
Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand 32-n bits of the
result. And it sets the left-hand n bits of the result to 0. See Figure 12-9.
The LSR #n operation can be used to divide the value in the register Rm by 27, if the value is regarded as an unsigned integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS,
BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the register Rm.

« |If nis 32 or more, then all the bits in the result are cleared to 0.
* If nis 33 or more and the carry flag is updated, it is updated to O.

DS60001719B-page 94 © 2022 Microchip Technology Inc.

SAM4CM SERIES

Figure 12-9: LSR #3
I Carry
000 Flag
vVYY
31 5(413]2|1(0

[LA [T

LSL
Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places, into the left-hand 32-n bits of the result;
and it sets the right-hand n bits of the result to 0. See Figure 12-10.

The LSL #n operation can be used to multiply the value in the register Rm by 2", if the value is regarded as an unsigned integer or a two's
complement signed integer. Overflow can occur without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[32-n], of the register Rm. These instructions do
not affect the carry flag when used with LSL #0.

* If nis 32 or more, then all the bits in the result are cleared to 0.
* If nis 33 or more and the carry flag is updated, it is updated to 0.

Figure 12-10: LSL #3

o 4+O—

31 5(4(3

G L EEE]

ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand 32-n bits of the result;
and it moves the right-hand n bits of the register into the left-hand n bits of the result. See Figure 12-11.

When the instruction is RORS or when ROR #n is used in Operand?2 with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS,
BICS, TEQ or TST, the carry flag is updated to the last bit rotation, bit[n-1], of the register Rm.

 If nis 32, then the value of the result is same as the value in Rm, and if the carry flag is updated, it is updated to bit[31] of Rm.
* ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

Figure 12-11: ROR #3

: Carry
Fla
iy | | °

31 5(413[2]|1]0

ASEE SN R

RRX

© 2022 Microchip Technology Inc. DS60001719B-page 95

SAM4CM SERIES

Rotate right with extend moves the bits of the register Rm to the right by one bit; and it copies the carry flag into bit[31] of the result. See
Figure 12-12.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS,
TEQ or TST, the carry flag is updated to bit[0] of the register Rm.

Figure 12-12: RRX

Carry
Flag

31|30 110

TS L]

12.6.3.5 Address Alignment

An aligned access is an operation where a word-aligned address is used for a word, dual word, or multiple word access, or where a half-
word-aligned address is used for a halfword access. Byte accesses are always aligned.

The Cortex-M4 processor supports unaligned access only for the following instructions:

* LDR, LDRT

* LDRH, LDRHT

+ LDRSH, LDRSHT

+ STR, STRT

+ STRH, STRHT

All other load and store instructions generate a usage fault exception if they perform an unaligned access, and therefore their accesses
must be address-aligned. For more information about usage faults, see “Fault Handling”.

Unaligned accesses are usually slower than aligned accesses. In addition, some memory regions might not support unaligned accesses.
Therefore, ARM recommends that programmers ensure that accesses are aligned. To avoid accidental generation of unaligned accesses,
use the UNALIGN_TRP bit in the Configuration and Control Register to trap all unaligned accesses, see “Configuration and Control Reg-
ister”.

12.6.3.6 PC-relative Expressions
A PC-relative expression or label is a symbol that represents the address of an instruction or literal data. It is represented in the instruction

as the PC value plus or minus a numeric offset. The assembler calculates the required offset from the label and the address of the current
instruction. If the offset is too big, the assembler produces an error.

» For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current instruction plus 4 bytes.

 For all other instructions that use labels, the value of the PC is the address of the current instruction plus 4 bytes, with bit[1] of the
result cleared to 0 to make it word-aligned.

* Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus or minus a number, or an expression
of the form [PC, #number].

12.6.3.7 Conditional Execution

Most data processing instructions can optionally update the condition flags in the Application Program Status Register (APSR) according
to the result of the operation, see “Application Program Status Register’. Some instructions update all flags, and some only update a sub-
set. If a flag is not updated, the original value is preserved. See the instruction descriptions for the flags they affect.

An instruction can be executed conditionally, based on the condition flags set in another instruction, either:
» Immediately after the instruction that updated the flags
+ After any number of intervening instructions that have not updated the flags.

Conditional execution is available by using conditional branches or by adding condition code suffixes to instructions. See Table 12-16 for
a list of the suffixes to add to instructions to make them conditional instructions. The condition code suffix enables the processor to test a
condition based on the flags. If the condition test of a conditional instruction fails, the instruction:

» Does not execute
* Does not write any value to its destination register

DS60001719B-page 96 © 2022 Microchip Technology Inc.

SAM4CM SERIES

* Does not affect any of the flags
* Does not generate any exception.

Conditional instructions, except for conditional branches, must be inside an If-Then instruction block. See “IT” for more information and
restrictions when using the IT instruction. Depending on the vendor, the assembler might automatically insert an IT instruction if there are
conditional instructions outside the IT block.

The CBZ and CBNZ instructions are used to compare the value of a register against zero and branch on the result.
This section describes:

+ “Condition Flags”
» “Condition Code Suffixes”.
Condition Flags

The APSR contains the following condition flags:

N Set to 1 when the result of the operation was negative, cleared to 0 otherwise.
Z Set to 1 when the result of the operation was zero, cleared to 0 otherwise.

C Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.

V Set to 1 when the operation caused overflow, cleared to 0 otherwise.

For more information about the APSR, see “Program Status Register”.

A carry occurs:

« If the result of an addition is greater than or equal to 232

« If the result of a subtraction is positive or zero
+ As the result of an inline barrel shifter operation in a move or logical instruction.

An overflow occurs when the sign of the result, in bit[31], does not match the sign of the result, had the operation been performed at infinite
precision, for example:

+ If adding two negative values results in a positive value

+ If adding two positive values results in a negative value

« If subtracting a positive value from a negative value generates a positive value
« If subtracting a negative value from a positive value generates a negative value.

The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that the result is discarded. See the instruction
descriptions for more information.

Note: Most instructions update the status flags only if the S suffix is specified. See the instruction descriptions for more information.

Condition Code Suffixes

The instructions that can be conditional have an optional condition code, shown in syntax descriptions as {cond}. Conditional execution
requires a preceding IT instruction. An instruction with a condition code is only executed if the condition code flags in the APSR meet the
specified condition. Table 12-16 shows the condition codes to use.

A conditional execution can be used with the IT instruction to reduce the number of branch instructions in code.
Table 12-16 also shows the relationship between condition code suffixes and the N, Z, C, and V flags.

Table 12-16: Condition Code Suffixes

Suffix Flags Meaning

EQ Z=1 Equal

NE Z=0 Not equal

CSorHS c=1 Higher or same, unsigned >
CCorlLO C=0 Lower, unsigned <

Mi N=1 Negative

PL N=0 Positive or zero

VS V=1 Overflow

© 2022 Microchip Technology Inc. DS60001719B-page 97

SAM4CM SERIES

Table 12-16: Condition Code Suffixes (Continued)

Suffix Flags Meaning

VvC V=0 No overflow

HI C=1andZ=0 Higher, unsigned >

LS C=0o0rZ=1 Lower or same, unsigned <

GE N=V Greater than or equal, signed >

LT N!=V Less than, signed <

GT Z=0andN=V Greater than, signed >

LE Z=1and N !'=V Less than or equal, signed <

AL Can have any value Always. This is the default when no suffix is specified.

Absolute Value

The example below shows the use of a conditional instruction to find the absolute value of a number. RO = ABS(R1).

MOVS RO, R1 ; RO = R1, setting flags
IT MI ; IT instruction for the negative condition
RSBMI RO, R1, #0 ; If negative, RO = -R1

Compare and Update Value

The example below shows the use of conditional instructions to update the value of R4 if the signed values RO is greater than R1 and R2
is greater than R3.

CMP RO, R1 ; Compare RO and R1, setting flags

ITT GT ; IT instruction for the two GT conditions

CMPGT R2, R3 ; If 'greater than', compare R2 and R3, setting flags
MOVGT R4, RS ; If still 'greater than', do R4 = R5

12.6.3.8 Instruction Width Selection

There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding depending on the operands and destination
register specified. For some of these instructions, the user can force a specific instruction size by using an instruction width suffix. The W
suffix forces a 32-bit instruction encoding. The .N suffix forces a 16-bit instruction encoding.

If the user specifies an instruction width suffix and the assembler cannot generate an instruction encoding of the requested width, it gen-
erates an error.

Note: In some cases, it might be necessary to specify the .W suffix, for example if the operand is the label of an instruction or literal
data, as in the case of branch instructions. This is because the assembler might not automatically generate the right size
encoding.

To use an instruction width suffix, place it immediately after the instruction mnemonic and condition code, if any. The example below shows
instructions with the instruction width suffix.

BCS.W 1label ; creates a 32-bit instruction even for a short ; branch
ADDS.W RO, RO, R1 ; creates a 32-bit instruction even though the same
; operation can be done by a 16-bit instruction

12.6.4 Memory Access Instructions
The table below shows the memory access instructions.

Table 12-17: Memory Access Instructions

Mnemonic Description

ADR Load PC-relative address

CLREX Clear Exclusive

LDM{mode} Load Multiple registers

LDR{type} Load Register using immediate offset

DS60001719B-page 98 © 2022 Microchip Technology Inc.

SAM4CM SERIES

Table 12-17: Memory Access Instructions (Continued)
Mnemonic Description
LDR{type} Load Register using register offset
LDR{type}T Load Register with unprivileged access
LDR Load Register using PC-relative address
LDRD Load Register Dual
LDREX({type} Load Register Exclusive
POP Pop registers from stack
PUSH Push registers onto stack
STM{mode} Store Multiple registers
STR{type} Store Register using immediate offset
STR{type} Store Register using register offset
STR{type}T Store Register with unprivileged access
STREX{type} Store Register Exclusive

12.6.4.1 ADR

Load PC-relative address.

Syntax

ADR{cond} Rd, label

where:

condis an optional condition code, see “Conditional Execution”.
Rdis the destination register.

labelis a PC-relative expression. See “PC-relative Expressions”.

Operation

ADR determines the address by adding an immediate value to the PC, and writes the result to the destination register.

ADR produces position-independent code, because the address is PC-relative.

If ADR is used to generate a target address for a BX or BLX instruction, ensure that bit[0] of the address generated is set to 1 for correct

execution.
Values of label must be within the range of —4095 to +4095 from the address in the PC.

Note: The user might have to use the .W suffix to get the maximum offset range or to generate addresses that are not word-aligned.

See “Instruction Width Selection”.

Restrictions

Rd must not be SP and must not be PC.
Condition Flags

This instruction does not change the flags.
Examples

ADR R1, TextMessage ; Write address value of a location labelled as
; TextMessage to R1

© 2022 Microchip Technology Inc.

DS60001719B-page 99

SAM4CM SERIES

12.6.4.2 LDR and STR, Immediate Offset
Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.

Syntax
op{type}{cond} Rt, [Rn {, #offset}] ; immediate offset
op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed
op{type}{cond} Rt, [Rnl, #offset ; post-indexed
opD{cond} Rt, Rt2, [Rn {, #offset}] ; immediate offset, two words
opD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, two words
opD{cond} Rt, Rt2, [Rnl, #offset ; post-indexed, two words
where:
opis one of:

LDRLoad Register.

STRStore Register.

typeis one of:

Bunsigned byte, zero extend to 32 bits on loads.

SBsigned byte, sign extend to 32 bits (LDR only).

Hunsigned halfword, zero extend to 32 bits on loads.

SHsigned halfword, sign extend to 32 bits (LDR only).

-omit, for word.

condis an optional condition code, see “Conditional Execution”.

Rtis the register to load or store.

Rnis the register on which the memory address is based.

offsetis an offset from Rn. If offset is omitted, the address is the contents of Rn.
Rt2is the additional register to load or store for two-word operations.

Operation

LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:
Offset Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the address for the memory
access. The register Rn is unaltered. The assembly language syntax for this mode is:

[Rn, #offset]

DS60001719B-page 100 © 2022 Microchip Technology Inc.

SAM4CM SERIES

Pre-indexed Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the address for the memory
access and written back into the register Rn. The assembly language syntax for this mode is:

[Rn, #offset]!
Post-indexed Addressing

The address obtained from the register Rn is used as the address for the memory access. The offset value is added to or subtracted from
the address, and written back into the register Rn. The assembly language syntax for this mode is:

[Rn], #offset

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can either be signed or unsigned. See
“Address Alignment”.

The table below shows the ranges of offset for immediate, pre-indexed and post-indexed forms.

Table 12-18: Offset Ranges

Instruction Type Immediate Offset Pre-indexed Post-indexed
Word, halfword, signed
halfword, byte, or signed byte -255 to 4095 -255 to 255 -255 to 255
Two words multiple of 4 in the multiple of 4 in the multiple of 4 in the
range -1020 to 1020 | range -1020 to 1020 | range -1020 to 1020
Restrictions

For load instructions:

* Rt can be SP or PC for word loads only
* Rt must be different from R{2 for two-word loads
* Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

When Rt is PC in a word load instruction:
+ Bit[0] of the loaded value must be 1 for correct execution

» A branch occurs to the address created by changing bit[0] of the loaded value to 0
« If the instruction is conditional, it must be the last instruction in the IT block.

For store instructions:

* Rt can be SP for word stores only

* Rt must not be PC

* Rn must not be PC

* Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

Condition Flags
These instructions do not change the flags.

© 2022 Microchip Technology Inc. DS60001719B-page 101

SAM4CM SERIES

Examples

LDR R8, [R10] ; Loads R8 from the address in R10.

LDRNE R2, [R5, #960]! ; Loads (conditionally) R2 from a word
; 960 bytes above the address in R5, and
; lncrements R5 by 960.

STR R2, [R9, #const-struc] ; const-struc is an expression evaluating
; to a constant in the range 0-4095.

STRH R3, [R4], #4 ; Store R3 as halfword data into address in
; R4, then increment R4 by 4

LDRD R8, R9, [R3, #0x20] ; Load R8 from a word 32 bytes above the

; address in R3, and load R9 from a word 36
; bytes above the address in R3

STRD RO, R1, [R8], #-16 ; Store RO to address in R8, and store R1 to
; a word 4 bytes above the address in RS,
; and then decrement R8 by 16.

12.6.4.3 LDR and STR, Register Offset

Load and Store with register offset.

Syntax

op{type}{cond} Rt, [Rn, Rm {, LSL #n}]

where:

opis one of:

LDRLoad Register.

STRStore Register.

typeis one of:

Bunsigned byte, zero extend to 32 bits on loads.

SBsigned byte, sign extend to 32 bits (LDR only).
Hunsigned halfword, zero extend to 32 bits on loads.
SHsigned halfword, sign extend to 32 bits (LDR only).
-omit, for word.

condis an optional condition code, see “Conditional Execution”.
Rtis the register to load or store.

Rnis the register on which the memory address is based.
Rmis a register containing a value to be used as the offset.
LSL #nis an optional shift, with n in the range 0 to 3.
Operation

LDR instructions load a register with a value from memory.
STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is specified by the register Rm and can be
shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either be signed or unsigned.
See “Address Alignment”.

DS60001719B-page 102 © 2022 Microchip Technology Inc.

SAM4CM SERIES

Restrictions
In these instructions:

* Rn must not be PC

* Rm must not be SP and must not be PC

* Rt can be SP only for word loads and word stores
* Rt can be PC only for word loads.

When Rtis PC in a word load instruction:

+ Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned address
« |f the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags
These instructions do not change the flags.
Examples

STR RO, [R5, R1] ; Store value of RO into an address equal to
; sum of R5 and R1
LDRSB RO, [R5, R1, LSL #1] ; Read byte value from an address equal to
; sum of R5 and two times R1l, sign extended it
; to a word value and put it in RO
STR RO, [R1, R2, LSL #2] ; Stores RO to an address equal to sum of R1
; and four times R2

12.6.4.4 LDR and STR, Unprivileged

Load and Store with unprivileged access.

Syntax

op{type}T{cond} Rt, [Rn {, #offset}] ; immediate offset
where:

opis one of:

LDRLoad Register.

STRStore Register.

typeis one of:

Bunsigned byte, zero extend to 32 bits on loads.

SBsigned byte, sign extend to 32 bits (LDR only).

Hunsigned halfword, zero extend to 32 bits on loads.
SHsigned halfword, sign extend to 32 bits (LDR only).

-omit, for word.

condis an optional condition code, see “Conditional Execution”.
Rtis the register to load or store.

Rnis the register on which the memory address is based.
offsetis an offset from Rn and can be 0 to 255.

If offset is omitted, the address is the value in Rn.

Operation

These load and store instructions perform the same function as the memory access instructions with immediate offset, see “LDR and STR,
Immediate Offset”. The difference is that these instructions have only unprivileged access even when used in privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as normal memory access instructions with imme-
diate offset.

Restrictions
In these instructions:
* Rn must not be PC

© 2022 Microchip Technology Inc. DS60001719B-page 103

SAM4CM SERIES

* Rt must not be SP and must not be PC.
Condition Flags

These instructions do not change the flags.

Examples
STRBTEQ R4, [R7] ; Conditionally store least significant byte in
; R4 to an address in R7, with unprivileged access
LDRHT R2, [R2, #8] ; Load halfword value from an address equal to

; sum of R2 and 8 into R2, with unprivileged access

12.6.4.5 LDR, PC-relative

Load register from memory.

Syntax

LDR{ type}{cond} Rt, label

LDRD{cond} Rt, Rt2, label ; Load two words
where:

typeis one of:

Bunsigned byte, zero extend to 32 bits.

SBsigned byte, sign extend to 32 bits.

Hunsigned halfword, zero extend to 32 bits.

SHsigned halfword, sign extend to 32 bits.

-omit, for word.

condis an optional condition code, see “Conditional Execution”.
Rtis the register to load or store.

Rt2is the second register to load or store.

labelis a PC-relative expression. See “PC-relative Expressions”.
Operation

LDR loads a register with a value from a PC-relative memory address. The memory address is specified by a label or by an offset from
the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either be signed or unsigned.
See “Address Alignment”.

label must be within a limited range of the current instruction. The table below shows the possible offsets between label and the PC.

Table 12-19: Offset Ranges

Instruction Type Offset Range
Word, halfword, signed halfword, byte, signed byte -4095 to 4095
Two words -1020 to 1020

The user might have to use the .W suffix to get the maximum offset range. See “Instruction Width Selection”.
Restrictions
In these instructions:

* Rt can be SP or PC only for word loads
* Rt2 must not be SP and must not be PC
* Rt must be different from Rt2.

DS60001719B-page 104 © 2022 Microchip Technology Inc.

SAM4CM SERIES

When Rtis PC in a word load instruction:

+ Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned address
+ If the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags
These instructions do not change the flags.

Examples
LDR RO, LookUpTable ; Load RO with a word of data from an address
; labelled as LookUpTable
LDRSB R7, localdata ; Load a byte value from an address labelled

; as localdata, sign extend it to a word
; value, and put it in R7

12.6.4.6 LDM and STM

Load and Store Multiple registers.

Syntax

op{addr_mode}{cond} Rn{!}, reglist

where:

opis one of:

LDMLoad Multiple registers.

STMStore Multiple registers.

addr_modeis any one of the following:

IAIncrement address After each access. This is the default.
DBDecrement address Before each access.

condis an optional condition code, see “Conditional Execution”.
Rnis the register on which the memory addresses are based.

lis an optional writeback suffix.
If I is present, the final address, that is loaded from or stored to, is written back into Rn.

reglistis a list of one or more registers to be loaded or stored, enclosed in braces. It
can contain register ranges. It must be comma separated if it contains more
than one register or register range, see “Examples”.

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full Descending stacks.
LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto Empty Ascending stacks.
STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full Descending stacks

Operation

LDM instructions load the registers in reglist with word values from memory addresses based on Rn.

STM instructions store the word values in the registers in reglist to memory addresses based on Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the accesses are at 4-byte intervals ranging from
Rnto Rn + 4 * (n-1), where n is the number of registers in reglist. The accesses happens in order of increasing register numbers, with the
lowest numbered register using the lowest memory address and the highest number register using the highest memory address. If the
writeback suffix is specified, the value of Rn + 4 * (n-1) is written back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at 4-byte intervals ranging from Rn to Rn -
4 * (n-1), where n is the number of registers in reglist. The accesses happen in order of decreasing register numbers, with the highest
numbered register using the highest memory address and the lowest number register using the lowest memory address. If the writeback
suffix is specified, the value of Rn - 4 * (n-1) is written back to Rn.

The PUSH and POP instructions can be expressed in this form. See “PUSH and POP”for details.
Restrictions

© 2022 Microchip Technology Inc. DS60001719B-page 105

SAM4CM SERIES

In these instructions:

* Rn must not be PC

* reglist must not contain SP

* In any STM instruction, reglist must not contain PC

* In any LDM instruction, reglist must not contain PC if it contains LR
* reglist must not contain Rn if the writeback suffix is specified.

When PC is in reglist in an LDM instruction:

« Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-aligned address
+ If the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags
These instructions do not change the flags.
Examples

LDM R8, {RO,R2,R9} ; LDMIA is a synonym for LDM
STMDB R1!, {R3-R6,R11,R12}

Incorrect Examples

STM R5!,{R5,R4,R9} ; Value stored for R5 is unpredictable
LDM R2, {} ; There must be at least one register in the list

12.6.4.7 PUSH and POP
Push registers onto, and pop registers off a full-descending stack.
Syntax

PUSH{cond} reglist
POP{cond} reglist

where:
condis an optional condition code, see “Conditional Execution”.

reglistis a non-empty list of registers, enclosed in braces. It can contain register
ranges. It must be comma separated if it contains more than one register or
register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for the access based on SP, and with the
final address for the access written back to the SP. PUSH and POP are the preferred mnemonics in these cases.

Operation

PUSH stores registers on the stack in order of decreasing the register numbers, with the highest numbered register using the highest mem-
ory address and the lowest numbered register using the lowest memory address.

POP loads registers from the stack in order of increasing register numbers, with the lowest numbered register using the lowest memory
address and the highest numbered register using the highest memory address.

See “LDM and STM” for more information.
Restrictions
In these instructions:

* reglist must not contain SP
» For the PUSH instruction, reglist must not contain PC
» For the POP instruction, reglist must not contain PC if it contains LR.

When PC is in reglist in a POP instruction:

+ Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-aligned address
« |f the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags
These instructions do not change the flags.

Examples

DS60001719B-page 106 © 2022 Microchip Technology Inc.

SAM4CM SERIES

PUSH {RO,R4-R7}
PUSH {rR2,LR}
POP {ro,R10,PC}

12.6.4.8 LDREX and STREX
Load and Store Register Exclusive.
Syntax

LDREX{cond} Rt, [Rn {, #offset}]
STREX{cond} Rd, Rt, [Rn {, #offset}]
LDREXB{cond} Rt, [Rn]

STREXB{cond} Rd, Rt, [Rn]
LDREXH{cond} Rt, [Rn]

STREXH{cond} Rd, Rt, [Rn]

}
}
}
}

where:

condis an optional condition code, see “Conditional Execution”.

Rdis the destination register for the returned status.

Rtis the register to load or store.

Rnis the register on which the memory address is based.

offsetis an optional offset applied to the value in Rn.

If offset is omitted, the address is the value in Rn.

Operation

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a memory address. The address used in any
Store-Exclusive instruction must be the same as the address in the most recently executed Load-exclusive instruction. The value stored
by the Store-Exclusive instruction must also have the same data size as the value loaded by the preceding Load-exclusive instruction.
This means software must always use a Load-exclusive instruction and a matching Store-Exclusive instruction to perform a synchroniza-
tion operation, see “Synchronization Primitives”.

If an Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does not perform the store, it writes 1 to its
destination register. If the Store-Exclusive instruction writes 0 to the destination register, it is guaranteed that no other process in the sys-
tem has accessed the memory location between the Load-exclusive and Store-Exclusive instructions.

For reasons of performance, keep the number of instructions between corresponding Load-Exclusive and Store-Exclusive instruction to a
minimum.

The result of executing a Store-Exclusive instruction to an address that is different from that used in the preceding Load-Exclusive instruc-
tion is unpredictable.

Restrictions
In these instructions:

* Do notuse PC

* Do not use SP for Rd and Rt

* For STREX, Rd must be different from both Rt and Rn

* The value of offset must be a multiple of four in the range 0-1020.

© 2022 Microchip Technology Inc. DS60001719B-page 107

SAM4CM SERIES

Condition Flags

These instructions do not change the flags.

Examples
MOV R1, #0x1 ; Initialize the ‘lock taken’ value try
LDREX RO, [LockAddr] ; Load the lock value
CMP RO, #0 ; Is the lock free?
ITT EQ ; IT instruction for STREXEQ and CMPEQ
STREXEQ RO, R1l, [LockAddr] ; Try and claim the lock
CMPEQ RO, #0O ; Did this succeed?
BNE try ; No - try again

; Yes - we have the lock

12.6.4.9 CLREX

Clear Exclusive.

Syntax

CLREX{ cond}

where:

condis an optional condition code, see “Conditional Execution”.
Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write a 1 to its destination register and fail to perform the store.
It is useful in exception handler code to force the failure of the store exclusive if the exception occurs between a load exclusive instruction
and the matching store exclusive instruction in a synchronization operation.

See “Synchronization Primitives” for more information.
Condition Flags

These instructions do not change the flags.

Examples

CLREX

12.6.5 General Data Processing Instructions
The table below shows the data processing instructions.

Table 12-20: Data Processing Instructions

Mnemonic Description

ADC Add with Carry
ADD Add

ADDW Add

AND Logical AND

ASR Arithmetic Shift Right
BIC Bit Clear

CLz Count leading zeros
CMN Compare Negative
CMP Compare

EOR Exclusive OR

LSL Logical Shift Left
LSR Logical Shift Right

DS60001719B-page 108 © 2022 Microchip Technology Inc.

SAM4CM SERIES

Table 12-20: Data Processing Instructions (Continued)
Mnemonic Description
MOV Move
MOVT Move Top
MOVW Move 16-bit constant
MVN Move NOT
ORN Logical OR NOT
ORR Logical OR
RBIT Reverse Bits
REV Reverse byte order in a word
REV16 Reverse byte order in each halfword
REVSH Reverse byte order in bottom halfword and sign extend
ROR Rotate Right
RRX Rotate Right with Extend
RSB Reverse Subtract
SADD16 Signed Add 16
SADDS8 Signed Add 8
SASX Signed Add and Subtract with Exchange
SSAX Signed Subtract and Add with Exchange
SBC Subtract with Carry
SHADD16 Signed Halving Add 16
SHADDS Signed Halving Add 8
SHASX Signed Halving Add and Subtract with Exchange
SHSAX Signed Halving Subtract and Add with Exchange
SHSUB16 Signed Halving Subtract 16
SHSUBS8 Signed Halving Subtract 8
SSUB16 Signed Subtract 16
SSUBS Signed Subtract 8
SuB Subtract
SUBW Subtract
TEQ Test Equivalence
TST Test
UADD16 Unsigned Add 16
UADDS8 Unsigned Add 8
UASX Unsigned Add and Subtract with Exchange
USAX Unsigned Subtract and Add with Exchange
UHADD16 Unsigned Halving Add 16
UHADDS8 Unsigned Halving Add 8

© 2022 Microchip Technology Inc.

DS60001719B-page 109

SAM4CM SERIES

Table 12-20: Data Processing Instructions (Continued)

Mnemonic Description

UHASX Unsigned Halving Add and Subtract with Exchange
UHSAX Unsigned Halving Subtract and Add with Exchange
UHSUB16 Unsigned Halving Subtract 16

UHSUBS Unsigned Halving Subtract 8

USAD8 Unsigned Sum of Absolute Differences

USADAS8 Unsigned Sum of Absolute Differences and Accumulate
USUB16 Unsigned Subtract 16

UsSuB8 Unsigned Subtract 8

DS60001719B-page 110 © 2022 Microchip Technology Inc.

SAM4CM SERIES

12.6.5.1 ADD, ADC, SUB, SBC, and RSB
Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.
Syntax

op{s}{cond} {Rd,} Rn, Operand2
op{cond} {Rd,} Rn, #imml2 ; ADD and SUB only

where:

opis one of:

ADD Add.

ADC Add with Carry.
SUB Subtract.

SBC Subtract with Carry.
RSB Reverse Subtract.

Sis an optional suffix. If S is specified, the condition code flags are updated on the result
of the operation, see “Conditional Execution”.

condis an optional condition code, see “Conditional Execution”.
Rdis the destination register. If Rd is omitted, the destination register is Rn.
Rnis the register holding the first operand.

Operand2is a flexible second operand. See “Flexible Second Operand” for details of the
options.

imm12is any value in the range 0-4095.

Operation

The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.

The ADC instruction adds the values in Rn and Operand2, together with the carry flag.

The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand?2 from the value in Rn. If the carry flag is clear, the result is reduced by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful because of the wide range of options for
Operand2.

Use ADC and SBC to synthesize multiword arithmetic, see “Multiword arithmetic examples” below.
See also “ADR”.

Note: ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent to the SUB syntax that uses the
imm12 operand.

Restrictions

In these instructions:

* Operand2 must not be SP and must not be PC

* Rd can be SP only in ADD and SUB, and only with the additional restrictions:
- Rn must also be SP
- Any shift in Operand2 must be limited to a maximum of 3 bits using LSL

* Rncan be SP only in ADD and SUB

© 2022 Microchip Technology Inc. DS60001719B-page 111

SAM4CM SERIES

* Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:
- The user must not specify the S suffix
- Rm must not be PC and must not be SP
- If the instruction is conditional, it must be the last instruction in the IT block

« With the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and SUB, and only with the additional
restrictions:

- The user must not specify the S suffix
- The second operand must be a constant in the range 0 to 4095.

- Note: When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded to 0b00 before performing the calcula-
tion, making the base address for the calculation word-aligned.

- Note: To generate the address of an instruction, the constant based on the value of the PC must be adjusted. ARM recommends
to use the ADR instruction instead of ADD or SUB with Rn equal to the PC, because the assembler automatically calculates the
correct constant for the ADR instruction.

When Rd is PC in the ADD{cond} PC, PC, Rm instruction:

« Bit[0] of the value written to the PC is ignored
« A branch occurs to the address created by forcing bit[0] of that value to 0.

Condition Flags

If S is specified, these instructions update the N, Z, C and V flags according to the result.

Examples
ADD R2, R1, R3 ; Sets the flags on the result
SUBS R8, R6, #240 ; Subtracts contents of R4 from 1280
RSB R4, R4, #1280 ; Only executed if C flag set and Z
ADCHI R11, RO, R3 ; flag clear.

Multiword Arithmetic Examples

The example below shows two instructions that add a 64-bit integer contained in R2 and R3 to another 64-bit integer contained in RO and
R1, and place the result in R4 and R5.

64-bit Addition Example

ADDS R4, RO, R2 ; add the least significant words
ADC R5, R1, R3 ; add the most significant words with carry

Multiword values do not have to use consecutive registers. The example below shows instructions that subtract a 96-bit integer contained
in R9, R1, and R11 from another contained in R6, R2, and R8. The example stores the result in R6, R9, and R2.

96-bit Subtraction Example

SUBS R6, R6, RO ; subtract the least significant words
SBCS R9, R2, R1 ; subtract the middle words with carry
SBC R2, R8, R11 ; subtract the most significant words with carry

DS60001719B-page 112 © 2022 Microchip Technology Inc.

SAM4CM SERIES

12.6.5.2 AND, ORR, EOR, BIC, and ORN
Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.
Syntax

op{s}{cond} {Rd,} Rn, Operand2

where:

opis one of:

AND logical AND.

ORR logical OR, or bit set.

EOR logical Exclusive OR.

BIC logical AND NOT, or bit clear.

ORN logical OR NOT.

Sis an optional suffix. If S is specified, the condition code flags are updated on the result
of the operation, see “Conditional Execution”.

condis an optional condition code, see “Conditional Execution”.
Rdis the destination register.
Rnis the register holding the first operand.

Operand2is a flexible second operand. See “Flexible Second Operand” for details of the
options.

Operation

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations on the values in Rn and Operand?2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the corresponding bits in the value of Operand2.
The ORN instruction performs an OR operation on the bits in Rn with the complements of the corresponding bits in the value of Operand?2.
Restrictions

Do not use SP and do not use PC.

Condition Flags

If S is specified, these instructions:

» Update the N and Z flags according to the result
» Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”
» Do not affect the V flag.

© 2022 Microchip Technology Inc. DS60001719B-page 113

SAM4CM SERIES

Examples
AND R9, R2, #OxFFO00
ORREQ R2, RO, R5
ANDS R9, R8, #0x19
EORS R7, R11, #0x18181818
BIC RO, R1, #0xab
ORN R7, R11l, R14, ROR #4
ORNS R7, R11, R14, ASR #32

12.6.5.3 ASR, LSL, LSR, ROR, and RRX
Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with Extend.
Syntax

op{s}{cond} Rd, Rm, Rs
op{s}{cond} Rd, Rm, #n
RRX{S}{cond} Rd, Rm

where:

opis one of:

ASR Arithmetic Shift Right.
LSL Logical Shift Left.
LSR Logical Shift Right.
ROR Rotate Right.

Sis an optional suffix. If S is specified, the condition code flags are updated on the result
of the operation, see “Conditional Execution”.

Rdis the destination register.

Rmis the register holding the value to be shifted.

Rsis the register holding the shift length to apply to the value in Rm. Only the least
significant byte is used and can be in the range 0 to 255.

nis the shift length. The range of shift length depends on the instruction:

ASR shift length from 1 to 32

LSL shift length from 0 to 31

LSR shift length from 1 to 32

ROR shift length from 0 to 31

MOVS Rd, Rm is the preferred syntax for LSLS Rd, Rm, #0.

Operation
ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of places specified by constant n or register Rs.
RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains unchanged. For details on what result is generated
by the different instructions, see “Shift Operations”.

Restrictions

Do not use SP and do not use PC.

Condition Flags
If S is specified:

» These instructions update the N and Z flags according to the result
+ The C flag is updated to the last bit shifted out, except when the shift length is 0, see “Shift Operations”.

DS60001719B-page 114 © 2022 Microchip Technology Inc.

SAM4CM SERIES

Examples
ASR R7, R8, #9 ; Arithmetic shift right by 9 bits
SLS R1, R2, #3 ; Logical shift left by 3 bits with flag update
LSR R4, R5, #6 ; Logical shift right by 6 bits
ROR R4, R5, R6 ; Rotate right by the value in the bottom byte of R6
RRX R4, RS ; Rotate right with extend.

12.6.5.4 CLz

Count Leading Zeros.

Syntax

CLZ{cond} Rd, Rm

where:

condis an optional condition code, see “Conditional Execution”.
Rdis the destination register.

Rmis the operand register.

Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result in Rd. The result value is 32 if no bits

are set and zero if bit[31] is set.
Restrictions

Do not use SP and do not use PC.
Condition Flags

This instruction does not change the flags.
Examples

CLZ R4 ,RS
CLZNE R2,R3

© 2022 Microchip Technology Inc.

DS60001719B-page 115

SAM4CM SERIES

12.6.5.5 CMP and CMN
Compare and Compare Negative.
Syntax

CMP{cond} Rn, Operand2
CMN{cond} Rn, Operand2

where:
condis an optional condition code, see “Conditional Execution”.
Rnis the register holding the first operand.

Operand2is a flexible second operand. See “Flexible Second Operand” for details of the
options.

Operation

These instructions compare the value in a register with Operand2. They update the condition flags on the result, but do not write the result
to a register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a SUBS instruction, except that the result
is discarded.

The CMN instruction adds the value of Operand?2 to the value in Rn. This is the same as an ADDS instruction, except that the result is
discarded.

Restrictions
In these instructions:

» Do not use PC
* Operand2 must not be SP.

Condition Flags
These instructions update the N, Z, C and V flags according to the result.

Examples
CMP R2, RO
CMN RO, #6400

CMPGT SP, R7, LSL #2

DS60001719B-page 116 © 2022 Microchip Technology Inc.

SAM4CM SERIES

12.6.5.6 MOV and MVN
Move and Move NOT.
Syntax

MOV{S}{cond} Rd, Operand2
MOV{cond} Rd, #imml6
MVN{S}{cond} Rd, Operand2

where:

Sis an optional suffix. If S is specified, the condition code flags are updated on the result
of the operation, see “Conditional Execution”.

condis an optional condition code, see “Conditional Execution”.
Rdis the destination register.

Operand2is a flexible second operand. See “Flexible Second Operand” for details of the

options.

imm16is any value in the range 0-65535.

Operation

The MOV instruction copies the value of Operand2 into Rd.

When Operand2 in a MOV instruction is a register with a shift other than LSL #0, the preferred syntax is the corresponding shift instruction:
* ASR{S}cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ASR #n
LSL{S}cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSL #nifn!=0

* LSR{SKcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSR #n

* ROR{SHKcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ROR #n

* RRX{SHcond} Rd, Rm is the preferred syntax for MOV{S}cond} Rd, Rm, RRX.

Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift instructions:
* MOV{S}Kcond} Rd, Rm, ASR Rs is a synonym for ASR{S}cond} Rd, Rm, Rs

* MOV{SH¥cond} Rd, Rm, LSL Rs is a synonym for LSL{S}{cond} Rd, Rm, Rs

+ MOV{S}¥cond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs

* MOV{S}cond} Rd, Rm, ROR Rs is a synonym for ROR{S}{cond} Rd, Rm, Rs

See “ASR, LSL, LSR, ROR, and RRX".

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on the value, and places the result into Rd.

The MOVW instruction provides the same function as MOV, but is restricted to using the imm16 operand.
Restrictions
SP and PC only can be used in the MOV instruction, with the following restrictions:

* The second operand must be a register without shift
» The S suffix must not be specified.

When Rd is PC in a MOV instruction:

+ Bit[0] of the value written to the PC is ignored
» A branch occurs to the address created by forcing bit[0] of that value to 0.

Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use of a BX or BLX instruction to branch for
software portability to the ARM instruction set.

Condition Flags
If S is specified, these instructions:

» Update the N and Z flags according to the result
» Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”
» Do not affect the V flag.

Examples

© 2022 Microchip Technology Inc. DS60001719B-page 117

SAM4CM SERIES

MOVS R11, #0x000B

MOV R1, #0xFAO05
MOVS R10, R12
MOV R3, #23

MOV R8, SP

MVNS R2, #OxF

12.6.5.7 MOVT
Move Top.
Syntax

MOVT{cond} Rd, #imml6

where:

7
7
7

7

7

Write
Write
Write
Write
Write

; Write

value
value
value
value
value
value

of
of
in
of
of
of

0x000B to R11l, flags get updated
0xFAO5 to R1l, flags are not updated

R12 to R10,
23 to R3

flags get updated

stack pointer to R8

OxXFFFFFFFO

(bitwise inverse of O0OxF)

to the R2 and update flags.

condis an optional condition code, see “Conditional Execution”.

Rdis the destination register.

imm16is a 16-bit immediate constant.

Operation

MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination register. The write does not affect Rd[15:0].
The MOV, MOVT instruction pair enables to generate any 32-bit constant.

Restrictions

Rd must not be SP and must not be PC.

Condition Flags

This instruction does not change the flags.

Examples
MOVT R3, #0xF123

7

7

Write 0xF123 to upper halfword of R3, lower halfword
and APSR are unchanged.

DS60001719B-page 118

© 2022 Microchip Technology Inc.

SAM4CM SERIES

12.6.5.8 REV, REV16, REVSH, and RBIT

Reverse bytes and Reverse bits.

Syntax

op{cond} Rd, Rn

where:

opis any of:

REV Reverse byte order in a word.

REV16 Reverse byte order in each halfword independently.
REVSH Reverse byte order in the bottom halfword, and sign extend to 32 bits.
RBIT Reverse the bit order in a 32-bit word.

condis an optional condition code, see “Conditional Execution”.
Rdis the destination register.

Rnis the register holding the operand.

Operation

Use these instructions to change endianness of data:

REV converts either:

« 32-bit big-endian data into little-endian data
« 32-bit little-endian data into big-endian data.

REV16 converts either:

+ 16-bit big-endian data into little-endian data
« 16-bit little-endian data into big-endian data.

REVSH converts either:

» 16-bit signed big-endian data into 32-bit signed little-endian data
» 16-bit signed little-endian data into 32-bit signed big-endian data.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.
Examples

REV R3, R7; Reverse byte order of value in R7 and write it to R3
REV16 RO, RO; Reverse byte order of each 16-bit halfword in RO
REVSH RO, R5; Reverse Signed Halfword

REVHS R3, R7; Reverse with Higher or Same condition

RBIT R7, R8; Reverse bit order of value in R8 and write the result to R7.

© 2022 Microchip Technology Inc.

DS60001719B-page 119

SAM4CM SERIES

12.6.5.9 SADD16 and SADD8

Signed Add 16 and Signed Add 8

Syntax

op{cond}{Rd,} Rn, Rm

where:

opis any of:

SADD16 Performs two 16-bit signed integer additions.

SADDS8 Performs four 8-bit signed integer additions.

condis an optional condition code, see “Conditional Execution”.
Rdis the destination register.

Rnis the first register holding the operand.

Rmis the second register holding the operand.

Operation

Use these instructions to perform a halfword or byte add in parallel:
The SADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Writes the result in the corresponding halfwords of the destination register.

The SADDS instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.
Writes the result in the corresponding bytes of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
SADD16 R1, RO ; Adds the halfwords in RO to the corresponding ; halfwords of Rl and writes
to corresponding halfword ; of R1.

SADD8 R4, RO, R5 ; Adds bytes of RO to the corresponding byte in R5 and
; writes to the corresponding byte in R4.

DS60001719B-page 120 © 2022 Microchip Technology Inc.

SAM4CM SERIES

12.6.5.10 SHADD16 and SHADDS

Signed Halving Add 16 and Signed Halving Add 8
Syntax

op{cond}{Rd,} Rn, Rm

where:

opis any of:

SHADD16 Signed Halving Add 16.

SHADDS Signed Halving Add 8.

condis an optional condition code, see “Conditional Execution”.
Rdis the destination register.

Rnis the first operand register.

Rmis the second operand register.

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the destination register:

The SHADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second operand.

2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halfword results in the destination register.
The SHADDBS instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the byte results in the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

SHADD16 R1, RO ; Adds halfwords in RO to corresponding halfword of R1

; and writes halved result to corresponding halfword in
SHADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and

; writes halved result to corresponding byte in R4.

© 2022 Microchip Technology Inc.

DS60001719B-page 121

SAM4CM SERIES

12.6.5.11 SHASX and SHSAX
Signed Halving Add and Subtract with Exchange and Signed Halving Subtract and Add with Exchange.

Syntax

opfcond} {Rd}, Rn, Rm

where:

opis any of:
SHASX Add and Subtract with Exchange and Halving.
SHSAX Subtract and Add with Exchange and Halving.

condis an optional condition code, see “Conditional Execution”.

Rdis the destination register.

Rn, Rmare registers holding the first and second operands.

Operation
The SHASX instruction:

1.
2.

Adds the top halfword of the first operand with the bottom halfword of the second operand.

Writes the halfword result of the addition to the top halfword of the destination register, shifted by one bit to the right causing a divide
by two, or halving.

Subtracts the top halfword of the second operand from the bottom highword of the first operand.

Writes the halfword result of the division in the bottom halfword of the destination register, shifted by one bit to the right causing a
divide by two, or halving.

The SHSAX instruction:

Subtracts the bottom halfword of the second operand from the top highword of the first operand.

2. Writes the halfword result of the addition to the bottom halfword of the destination register, shifted by one bit to the right causing a
divide by two, or halving.

3. Adds the bottom halfword of the first operand with the top halfword of the second operand.

4. Writes the halfword result of the division in the top halfword of the destination register, shifted by one bit to the right causing a divide
by two, or halving.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

SHASX R7, R4, R2 ; Adds top halfword of R4 to bottom halfword of R2

SHSAX RO, R3, R5

and writes halved result to top halfword of R7
Subtracts top halfword of R2 from bottom halfword of
R4 and writes halved result to bottom halfword of R7
Subtracts bottom halfword of R5 from top halfword

of R3 and writes halved result to top halfword of RO
Adds top halfword of R5 to bottom halfword of R3 and
writes halved result to bottom halfword of RO.

DS60001719B-page 122 © 2022 Microchip Technology Inc.

SAM4CM SERIES

12.6.5.12 SHSUB16 and SHSUBS

Signed Halving Subtract 16 and Signed Halving Subtract 8
Syntax

op{cond}{Rd,} Rn, Rm

where:

opis any of:

SHSUB16 Signed Halving Subtract 16.

SHSUBS8 Signed Halving Subtract 8.

condis an optional condition code, see “Conditional Execution”.
Rdis the destination register.

Rnis the first operand register.

Rmis the second operand register.

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the destination register:
The SHSUB16 instruction:

1. Subtracts each halfword of the second operand from the corresponding halfwords of the first operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halved halfword results in the destination register.

The SHSUBBS instruction:

1. Subtracts each byte of the second operand from the corresponding byte of the first operand,
2. Shuffles the result by one bit to the right, halving the data,
3. Writes the corresponding signed byte results in the destination register.

Restrictions
Do not use SP and do not use PC.

Condition Flags
These instructions do not change the flags.
Examples

SHSUB16 R1, RO ; Subtracts halfwords in RO from corresponding halfword
; of Rl and writes to corresponding halfword of R1

SHSUB8 R4, RO, R5 ; Subtracts bytes of RO from corresponding byte in R5,
; and writes to corresponding byte in R4.

© 2022 Microchip Technology Inc. DS60001719B-page 123

SAM4CM SERIES

12.6.5.13 SSUB16 and SSUB8

Signed Subtract 16 and Signed Subtract 8

Syntax

op{cond}{Rd,} Rn, Rm

where:

opis any of:

SSUB16 Performs two 16-bit signed integer subtractions.
SSUB8 Performs four 8-bit signed integer subtractions.
condis an optional condition code, see “Conditional Execution”.
Rdis the destination register.

Rnis the first operand register.

Rmis the second operand register.

Operation

Use these instructions to change endianness of data:
The SSUB16 instruction:

1. Subtracts each halfword from the second operand from the corresponding halfword of the first operand
2. Writes the difference result of two signed halfwords in the corresponding halfword of the destination register.

The SSUBS instruction:

1. Subtracts each byte of the second operand from the corresponding byte of the first operand
2. Writes the difference result of four signed bytes in the corresponding byte of the destination register.

Restrictions
Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples

SSUB16 R1, RO ; Subtracts halfwords in RO from corresponding halfword
; of R1 and writes to corresponding halfword of R1
SSUB8 R4, RO, R5 ; Subtracts bytes of R5 from corresponding byte in
; RO, and writes to corresponding byte of R4.

DS60001719B-page 124 © 2022 Microchip Technology Inc.

SAM4CM SERIES

12.6.5.14 SASX and SSAX

Signed Add and Subtract with Exchange and Signed Subtract and Add with Exchange.
Syntax

opf{cond} {Rd}, Rm, Rn

where:

opis any of:

SASX Signed Add and Subtract with Exchange.

SSAX Signed Subtract and Add with Exchange.

condis an optional condition code, see “Conditional Execution”.

Rdis the destination register.

Rn, Rmare registers holding the first and second operands.

Operation

The SASX instruction:

1. Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.
2. Writes the signed result of the addition to the top halfword of the destination register.

3. Subtracts the signed bottom halfword of the second operand from the top signed highword of the first operand.
4. Writes the signed result of the subtraction to the bottom halfword of the destination register.

The SSAX instruction:

1. Subtracts the signed bottom halfword of the second operand from the top signed highword of the first operand.
2. Writes the signed result of the addition to the bottom halfword of the destination register.

3. Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.

4. Writes the signed result of the subtraction to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.
Examples

SASX RO, R4, R5 Adds top halfword of R4 to bottom halfword of R5 and
writes to top halfword of RO

Subtracts bottom halfword of R5 from top halfword of R4
and writes to bottom halfword of RO

Subtracts top halfword of R2 from bottom halfword of R3
and writes to bottom halfword of R7

Adds top halfword of R3 with bottom halfword of R2 and

writes to top halfword of R7.

SSAX R7, R3, R2

© 2022 Microchip Technology Inc. DS60001719B-page 125

SAM4CM SERIES

12.6.5.15 TST and TEQ
Test bits and Test Equivalence.
Syntax

TST{cond} Rn, Operand2
TEQ{cond} Rn, Operand2

where
condis an optional condition code, see “Conditional Execution”.
Rnis the register holding the first operand.

Operand2is a flexible second operand. See “Flexible Second Operand” for details of the
options.

Operation

These instructions test the value in a register against Operand2. They update the condition flags based on the result, but do not write the
result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of Operand2. This is the same as the ANDS
instruction, except that it discards the result.

To test whether a bit of Rnis 0 or 1, use the TST instruction with an Operand2 constant that has that bit set to 1 and all other bits cleared
to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value of Operand?2. This is the same as the
EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical Exclusive OR of the sign bits of the two
operands.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions:

» Update the N and Z flags according to the result
« Can update the C flag during the calculation of Operand?2, see “Flexible Second Operand”
» Do not affect the V flag.

Examples
TST RO, #0x3F8 ; Perform bitwise AND of RO value to 0x3F8,
; APSR is updated but result is discarded
TEQEQ R10, RO ; Conditionally test if value in R10 is equal to

; value in R9, APSR is updated but result is discarded.

DS60001719B-page 126 © 2022 Microchip Technology Inc.

SAM4CM SERIES

12.6.5.16 UADD16 and UADD8

Unsigned Add 16 and Unsigned Add 8

Syntax

op{cond}{Rd,} Rn, Rm

where:

opis any of:

UADD16 Performs two 16-bit unsigned integer additions.
UADDS Performs four 8-bit unsigned integer additions.
condis an optional condition code, see “Conditional Execution”.
Rdis the destination register.

Rnis the first register holding the operand.

Rmis the second register holding the operand.

Operation

Use these instructions to add 16- and 8-bit unsigned data:
The UADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Writes the unsigned result in the corresponding halfwords of the destination register.

The UADD16 instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Writes the unsigned result in the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.
Examples

UADD16 R1, RO Adds halfwords in RO to corresponding halfword of R1,

writes to corresponding halfword of R1
Adds bytes of RO to corresponding byte in R5 and
writes to corresponding byte in R4.

UADD8 R4, RO, R5

© 2022 Microchip Technology Inc.

DS60001719B-page 127

SAM4CM SERIES

12.6.5.17 UASX and USAX

Add and Subtract with Exchange and Subtract and Add with Exchange.

Syntax

opfcond} {Rd}, Rn, Rm

where:

opis one of:

UASX Add and Subtract with Exchange.

USAX Subtract and Add with Exchange.

condis an optional condition code, see “Conditional Execution”.

Rdis the destination register.

Rn, Rmare registers holding the first and second operands.

Operation

The UASX instruction:

1. Subtracts the top halfword of the second operand from the bottom halfword of the first operand.
2. Writes the unsigned result from the subtraction to the bottom halfword of the destination register.
3. Adds the top halfword of the first operand with the bottom halfword of the second operand.

4. Writes the unsigned result of the addition to the top halfword of the destination register.

The USAX instruction:

1. Adds the bottom halfword of the first operand with the top halfword of the second operand.

2. Writes the unsigned result of the addition to the bottom halfword of the destination register.

3. Subtracts the bottom halfword of the second operand from the top halfword of the first operand.
4. Writes the unsigned result from the subtraction to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.
Examples

UASX RO, R4, RS Adds top halfword of R4 to bottom halfword of R5 and
writes to top halfword of RO

Subtracts bottom halfword of R5 from top halfword of RO
and writes to bottom halfword of RO

Subtracts top halfword of R2 from bottom halfword of R3
and writes to bottom halfword of R7

Adds top halfword of R3 to bottom halfword of R2 and
writes to top halfword of R7.

USAX R7, R3, R2

DS60001719B-page 128

© 2022 Microchip Technology Inc.

SAM4CM SERIES

12.6.5.18 UHADD16 and UHADD8

Unsigned Halving Add 16 and Unsigned Halving Add 8

Syntax

op{cond}{Rd,} Rn, Rm

where:

opis any of:

UHADD16 Unsigned Halving Add 16.

UHADDS8 Unsigned Halving Add 8.

condis an optional condition code, see “Conditional Execution”.
Rdis the destination register.

Rnis the register holding the first operand.

Rmis the register holding the second operand.

Operation

Use these instructions to add 16- and 8-bit data and then to halve the result before writing the result to the destination register:
The UHADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Shuffles the halfword result by one bit to the right, halving the data.
3. Writes the unsigned results to the corresponding halfword in the destination register.

The UHADDS instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Shuffles the byte result by one bit to the right, halving the data.
3. Writes the unsigned results in the corresponding byte in the destination register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
UHADD16 R7, R3 ; Adds halfwords in R7 to corresponding halfword of R3
; and writes halved result to corresponding halfword ; in R7
UHADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and ; writes halved result

to corresponding byte in R4.

© 2022 Microchip Technology Inc. DS60001719B-page 129

SAM4CM SERIES

12.6.5.19 UHASX and UHSAX

Unsigned Halving Add and Subtract with Exchange and Unsigned Halving Subtract and Add with Exchange.

Syntax

opfcond} {Rd}, Rn, Rm

where:

opis one of:

UHASX Add and Subtract with Exchange and Halving.
UHSAX Subtract and Add with Exchange and Halving.
condis an optional condition code, see “Conditional Execution”.
Rdis the destination register.

Rn, Rmare registers holding the first and second operands.
Operation

The UHASX instruction:

Adds the top halfword of the first operand with the bottom halfword of the second operand.
Shifts the result by one bit to the right causing a divide by two, or halving.
Writes the halfword result of the addition to the top halfword of the destination register.

Shifts the result by one bit to the right causing a divide by two, or halving.
Writes the halfword result of the division in the bottom halfword of the destination register.

The UHSAX instruction:

S o e

Shifts the result by one bit to the right causing a divide by two, or halving.

Writes the halfword result of the subtraction in the top halfword of the destination register.
Adds the bottom halfword of the first operand with the top halfword of the second operand.
Shifts the result by one bit to the right causing a divide by two, or halving.

Writes the halfword result of the addition to the bottom halfword of the destination register.

S S

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

UHASX R7, R4, R2 ; Adds top halfword of R4 with bottom halfword of R2
; and writes halved result to top halfword of R7
; Subtracts top halfword of R2 from bottom halfword of
; R7 and writes halved result to bottom halfword of R7
UHSAX RO, R3, R5 ; Subtracts bottom halfword of R5 from top halfword of
; R3 and writes halved result to top halfword of RO
; Adds top halfword of R5 to bottom halfword of R3 and
; writes halved result to bottom halfword of RO.

Subtracts the top halfword of the second operand from the bottom highword of the first operand.

Subtracts the bottom halfword of the second operand from the top highword of the first operand.

DS60001719B-page 130

© 2022 Microchip Technology Inc.

SAM4CM SERIES

12.6.5.20 UHSUB16 and UHSUBS8

Unsigned Halving Subtract 16 and Unsigned Halving Subtract 8
Syntax

op{cond}{Rd,} Rn, Rm

where:

opis any of:

UHSUB16 Performs two unsigned 16-bit integer additions, halves the results,
and writes the results to the destination register.

UHSUBS8 Performs four unsigned 8-bit integer additions, halves the results, and
writes the results to the destination register.

condis an optional condition code, see “Conditional Execution”.
Rdis the destination register.

Rnis the first register holding the operand.

Rmis the second register holding the operand.

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the destination register:

The UHSUB16 instruction:

1. Subtracts each halfword of the second operand from the corresponding halfword of the first operand.

2. Shuffles each halfword result to the right by one bit, halving the data.

3. Writes each unsigned halfword result to the corresponding halfwords in the destination register.

The UHSUBS instruction:

1. Subtracts each byte of second operand from the corresponding byte of the first operand.

2. Shuffles each byte result by one bit to the right, halving the data.

3. Writes the unsigned byte results to the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
UHSUBl16 R1, RO ; Subtracts halfwords in RO from corresponding halfword of
; R1 and writes halved result to corresponding halfword in R1
UHSUB8 R4, RO, R5 ; Subtracts bytes of R5 from corresponding byte in RO and

; writes halved result to corresponding byte in R4.

© 2022 Microchip Technology Inc.

DS60001719B-page 131

SAM4CM SERIES

12.6.5.21 SEL

Select Bytes. Selects each byte of its result from either its first operand or its second operand, according to the values of the GE flags.
Syntax

SEL{<c>}{<g>} {<Rd>,} <Rn>, <Rm>
where:

¢, gare standard assembler syntax fields.

Rdis the destination register.

Rnis the first register holding the operand.
Rmis the second register holding the operand.
Operation

The SEL instruction:

1. Reads the value of each bit of APSR.GE.
2. Depending on the value of APSR.GE, assigns the destination register the value of either the first or second operand register.

Restrictions
None.
Condition Flags

These instructions do not change the flags.

Examples
SADD16 RO, R1, R2 ; Set GE bits based on result
SEL RO, RO, R3 ; Select bytes from RO or R3, based on GE.

DS60001719B-page 132 © 2022 Microchip Technology Inc.

SAM4CM SERIES

12.6.5.22 USADS

Unsigned Sum of Absolute Differences
Syntax

USAD8{cond}{Rd,} Rn, Rm

where:

condis an optional condition code, see “Conditional Execution”.

Rdis the destination register.

Rnis the first operand register.
Rmis the second operand register.
Operation

The USADS instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first operand register.

2. Adds the absolute values of the differences together.
3. Writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples

USAD8 R1, R4, RO ; Subtracts each byte in RO from corresponding byte of R4
; adds the differences and writes to R1

USAD8 RO, R5 ; Subtracts bytes of R5 from corresponding byte in RO,
; adds the differences and writes to RO.

© 2022 Microchip Technology Inc.

DS60001719B-page 133

SAM4CM SERIES

12.6.5.23 USADAS

Unsigned Sum of Absolute Differences and Accumulate
Syntax

USADA8{cond}{Rd,} Rn, Rm, Ra

where:

condis an optional condition code, see “Conditional Execution”.

Rdis the destination register.

Rnis the first operand register.

Rmis the second operand register.

Rais the register that contains the accumulation value.
Operation

The USADAS instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first operand register.

2. Adds the unsigned absolute differences together.

3. Adds the accumulation value to the sum of the absolute differences.

4. Writes the result to the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
USADA8 R1, RO, R6 ; Subtracts bytes in RO from corresponding halfword of R1
; adds differences, adds value of R6, writes to R1
USADA8 R4, RO, R5, R2 ; Subtracts bytes of R5 from corresponding byte in RO

; adds differences,

adds value of R2 writes to R4.

DS60001719B-page 134

© 2022 Microchip Technology Inc.

SAM4CM SERIES

12.6.5.24 USUB16 and USUB8

Unsigned Subtract 16 and Unsigned Subtract 8

Syntax

op{cond}{Rd,} Rn, Rm

where

opis any of:

USUB16 Unsigned Subtract 16.

USUBS8 Unsigned Subtract 8.

condis an optional condition code, see “Conditional Execution”.
Rdis the destination register.

Rnis the first operand register.

Rmis the second operand register.

Operation

Use these instructions to subtract 16-bit and 8-bit data before writing the result to the destination register:
The USUB16 instruction:

1. Subtracts each halfword from the second operand register from the corresponding halfword of the first operand register.
2. Writes the unsigned result in the corresponding halfwords of the destination register.

The USUBS instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first operand register.
2. Writes the unsigned byte result in the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.
Examples

USUB16 R1, RO ; Subtracts halfwords in RO from corresponding halfword of R1
; and writes to corresponding halfword in R1USUB8 R4, RO, R5
; Subtracts bytes of R5 from corresponding byte in R0 and
; writes to the corresponding byte in R4.

© 2022 Microchip Technology Inc. DS60001719B-page 135

SAM4CM SERIES

12.6.6 Multiply and Divide Instructions

The table below shows the multiply and divide instructions.

Table 12-21: Multiply and Divide Instructions

Mnemonic Description

MLA Multiply with Accumulate, 32-bit result
MLS Multiply and Subtract, 32-bit result
MUL Multiply, 32-bit result

SDIV Signed Divide

SMLA[B,T] Signed Multiply Accumulate (halfwords)

SMLAD, SMLADX

Signed Multiply Accumulate Dual

SMLAL

Signed Multiply with Accumulate (32 x 32 + 64), 64-bit result

SMLAL[B,T] Signed Multiply Accumulate Long (halfwords)
SMLALD, SMLALDX Signed Multiply Accumulate Long Dual
SMLAWIBIT] Signed Multiply Accumulate (word by halfword)
SMLSD Signed Multiply Subtract Dual

SMLSLD Signed Multiply Subtract Long Dual

SMMLA Signed Most Significant Word Multiply Accumulate

SMMLS, SMMLSR

Signed Most Significant Word Multiply Subtract

SMUAD, SMUADX

Signed Dual Multiply Add

SMULI[B,T] Signed Multiply (word by halfword)
SMMUL, SMMULR Signed Most Significant Word Multiply
SMULL Signed Multiply (32x32), 64-bit result

SMULWB, SMULWT

Signed Multiply (word by halfword)

SMUSD, SMUSDX

Signed Dual Multiply Subtract

ubIV Unsigned Divide

UMAAL Unsigned Multiply Accumulate Accumulate Long (32 x 32 + 32 + 32), 64-bit result
UMLAL Unsigned Multiply with Accumulate (32 x 32 + 64), 64-bit result

UMULL Unsigned Multiply (32 x 32), 64-bit result

DS60001719B-page 136

© 2022 Microchip Technology Inc.

SAM4CM SERIES

12.6.6.1 MUL, MLA, and MLS
Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and producing a 32-bit result.

Syntax

MUL{S}{cond} {Rd,} Rn, Rm ; Multiply

MLA{cond} Rd, Rn, Rm, Ra ; Multiply with accumulate
MLS{cond} Rd, Rn, Rm, Ra ; Multiply with subtract
where:

condis an optional condition code, see “Conditional Execution”.

Sis an optional suffix. If S is specified, the condition code flags are updated on the result
of the operation, see “Conditional Execution”.

Rdis the destination register. If Rd is omitted, the destination register is Rn.

Rn, Rmare registers holding the values to be multiplied.

Rais a register holding the value to be added or subtracted from.

Operation

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32 bits of the result in Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the least significant 32 bits of the result
in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value from Ra, and places the least significant
32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or unsigned.
Restrictions

In these instructions, do not use SP and do not use PC.

If the S suffix is used with the MUL instruction:

* Rd, Rn, and Rm must all be in the range RO to R7
* Rd must be the same as Rm
* The cond suffix must not be used.

Condition Flags
If S is specified, the MUL instruction:

+ Updates the N and Z flags according to the result
» Does not affect the C and V flags.

Examples
MUL R10, R2, R5 ; Multiply, R10 = R2 x R5
MLA R10, R2, R1l, R5 ; Multiply with accumulate, R10 = (R2 x R1) + R5
MULS RO, R2, R2 ; Multiply with flag update, RO = R2 x R2
MULLT R2, R3, R2 ; Conditionally multiply, R2 = R3 x R2
MLS R4, R5, R6, R7 ; Multiply with subtract, R4 = R7 - (R5 x R6)

© 2022 Microchip Technology Inc. DS60001719B-page 137

SAM4CM SERIES

12.6.6.2 UMULL, UMAAL, UMLAL

Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit result.
Syntax

op{cond} RdLo, RdHi, Rn, Rm

where:

opis one of:

UMULL Unsigned Long Multiply.

UMAAL Unsigned Long Multiply with Accumulate Accumulate.

UMLAL Unsigned Long Multiply, with Accumulate.

condis an optional condition code, see “Conditional Execution”.

RdHi, RdLoare the destination registers. For UMAAL, UMLAL and UMLAL they also hold
the accumulating value.

Rn, Rmare registers holding the first and second operands.
Operation

These instructions interpret the values from Rn and Rm as unsigned 32-bit integers.
The UMULL instruction:

» Multiplies the two unsigned integers in the first and second operands.

» Writes the least significant 32 bits of the result in RdLo.

» Writes the most significant 32 bits of the result in RdHi.

The UMAAL instruction:

+ Multiplies the two unsigned 32-bit integers in the first and second operands.

» Adds the unsigned 32-bit integer in RdHi to the 64-bit result of the multiplication.
+ Adds the unsigned 32-bit integer in RdLo to the 64-bit result of the addition.

» Writes the top 32-bits of the result to RdHi.

» Writes the lower 32-bits of the result to RdLo.

The UMLAL instruction:

» Multiplies the two unsigned integers in the first and second operands.
+ Adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo.
» Writes the result back to RdHi and RdLo.

Restrictions
In these instructions:

* Do not use SP and do not use PC.
* RdHi and RdLo must be different registers.

Condition Flags
These instructions do not affect the condition code flags.

Examples
UMULL RO, R4, R5, R6 ; Multiplies R5 and R6, writes the top 32 bits to R4
; and the bottom 32 bits to RO
UMAAL R3, R6, R2, R7 ; Multiplies R2 and R7, adds R6, adds R3, writes the
; top 32 bits to R6, and the bottom 32 bits to R3
UMLAL R2, R1, R3, R5 ; Multiplies R5 and R3, adds R1:R2, writes to R1:R2.

DS60001719B-page 138 © 2022 Microchip Technology Inc.

SAM4CM SERIES

12.6.6.3 SMLA and SMLAW

Signed Multiply Accumulate (halfwords).

Syntax

op{xY}{cond} Rd, Rn, Rm
op{Y}{cond} R4, Rn, Rm, Ra

where:

opis one of:

SMLA Signed Multiply Accumulate Long (halfwords).
X and Y specifies which half of the source registers Rn and Rm are used as the

first and second multiply operand.

If X'is B, then the bottom halfword, bits [15:0], of Rn is used.
If Xis T, then the top halfword, bits [31:16], of Rn is used.

If Y'is B, then the bottom halfword, bits [15:0], of Rm is used.
If Yis T, then the top halfword, bits [31:16], of Rm is used

SMLAW Signed Multiply Accumulate (word by halfword).

Y specifies which half of the source register Rm is used as the second multiply

operand.

If Yis T, then the top halfword, bits [31:16] of Rm is used.
If Yis B, then the bottom halfword, bits [15:0] of Rm is used.

condis an optional condition code, see “Conditional Execution”.

Rdis the destination register. If Rd is omitted, the destination register is Rn.

Rn, Rmare registers holding the values to be multiplied.

Rais a register holding the value to be added or subtracted from.

Operation

The SMALBB, SMLABT, SMLATB, SMLATT instructions:

» Multiplies the specified signed halfword, top or bottom, values from Rn and Rm.
« Adds the value in Ra to the resulting 32-bit product.
» Writes the result of the multiplication and addition in Rd.

The non-specified halfwords of the source registers are ignored.
The SMLAWB and SMLAWT instructions:

» Multiply the 32-bit signed values in Rn with:

- The top signed halfword of Rm, T instruction suffix.

- The bottom signed halfword of Rm, B instruction suffix.
» Add the 32-bit signed value in Ra to the top 32 bits of the 48-bit product
» Writes the result of the multiplication and addition in Rd.

The bottom 16 bits of the 48-bit product are ignored.

If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag in the APSR. No overflow can occur during

the multiplication.
Restrictions

In these instructions, do not use SP and do not use PC.

Condition Flags

If an overflow is detected, the Q flag is set.

Examples
SMLABE R5, R6, R4, R1

SMLATB R5, R6, R4, R1

SMLATT R5, R6, R4, R1

; Multiplies bottom halfwords of R6 and R4, adds

; R1 and writes to R5

; Multiplies top halfword of R6 with bottom halfword
; of R4, adds R1 and writes to R5

; Multiplies top halfwords of R6 and R4, adds

© 2022 Microchip Technology Inc.

DS60001719B-page 139

SAM4CM SERIES

; R1 and writes the sum to R5

SMLABT R5, R6, R4, R1 ; Multiplies bottom halfword of R6 with top halfword
; of R4, adds R1 and writes to RS
SMLABT R4, R3, R2 ; Multiplies bottom halfword of R4 with top halfword of

; R3, adds R2 and writes to R4
SMLAWB R10, R2, R5, R3 ; Multiplies R2 with bottom halfword of R5, adds
; R3 to the result and writes top 32-bits to R10
SMLAWT R10, R2, R1, R5 ; Multiplies R2 with top halfword of R1l, adds R5
; and writes top 32-bits to R10.

DS60001719B-page 140 © 2022 Microchip Technology Inc.

SAM4CM SERIES

12.6.6.4 SMLAD

Signed Multiply Accumulate Long Dual

Syntax

op{x}{cond} R4, Rn, Rm, Ra ;

where:

opis one of:

SMLAD Signed Multiply Accumulate Dual.

SMLADX Signed Multiply Accumulate Dual Reverse.

X specifies which halfword of the source register Rn is used as the multiply
operand.

If X is omitted, the multiplications are bottom x bottom and top x top.

If X is present, the multiplications are bottom x top and top x bottom.

condis an optional condition code, see “Conditional Execution”.
Rdis the destination register.

Rnis the first operand register holding the values to be multiplied.
Rmthe second operand register.

Rais the accumulate value.

Operation

The SMLAD and SMLADX instructions regard the two operands as four halfword 16-bit values. The SMLAD and SMLADX instructions:
+ If Xis not present, multiply the top signed halfword value in Rn with the top signed halfword of Rm and the bottom signed halfword

values in Rn with the bottom signed halfword of Rm.

« Orif Xis present, multiply the top signed halfword value in Rn with the bottom signed halfword of Rm and the bottom signed half-

word values in Rn with the top signed halfword of Rm.
+ Add both multiplication results to the signed 32-bit value in Ra.
» Wirites the 32-bit signed result of the multiplication and addition to Rd.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples

SMLAD R10, R2, R1l, R5 ; Multiplies two halfword values in R2 with
; corresponding halfwords in R1, adds R5 and

; writes to R10

SMLALDX RO, R2, R4, R6 ; Multiplies top halfword of R2 with bottom
; halfword of R4, multiplies bottom halfword of R2
; with top halfword of R4, adds R6 and writes to

; RO.

© 2022 Microchip Technology Inc.

DS60001719B-page 141

SAM4CM SERIES

12.6.6.5 SMLAL and SMLALD
Signed Multiply Accumulate Long, Signed Multiply Accumulate Long (halfwords) and Signed Multiply Accumulate Long Dual.
Syntax

op{cond} RdLo, RdHi, Rn, Rm
op{XY}{cond} RdLo, RdHi, Rn, Rm
op{Xx}{cond} RdLo, RdHi, Rn, Rm

where:

opis one of:

MLAL Signed Multiply Accumulate Long.

SMLAL Signed Multiply Accumulate Long (halfwords, X and Y).

X and Y specify which halfword of the source registers Rn and Rm are used as
the first and second multiply operand:

If X'is B, then the bottom halfword, bits [15:0], of Rn is used.
If Xis T, then the top halfword, bits [31:16], of Rn is used.

If Yis B, then the bottom halfword, bits [15:0], of Rm is used.
If Yis T, then the top halfword, bits [31:16], of Rm is used.

SMLALD Signed Multiply Accumulate Long Dual.

SMLALDX Signed Multiply Accumulate Long Dual Reversed.

If the X is omitted, the multiplications are bottom x bottom and top x top.
If X is present, the multiplications are bottom x top and top x bottom.
condis an optional condition code, see “Conditional Execution”.

RdHi, RdLoare the destination registers.

RdLo is the lower 32 bits and RdHi is the upper 32 bits of the 64-bit integer.
For SMLAL, SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLALD and SMLA
LDX, they also hold the accumulating value.

Rn, Rmare registers holding the first and second operands.

Operation

The SMLAL instruction:

» Multiplies the two’s complement signed word values from Rn and Rm.

* Adds the 64-bit value in RdLo and RdHi to the resulting 64-bit product.
» Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.

The SMLALBB, SMLALBT, SMLALTB and SMLALTT instructions:
« Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.

+ Adds the resulting sign-extended 32-bit product to the 64-bit value in RdLo and RdHi.
» Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.

The non-specified halfwords of the source registers are ignored.

The SMLALD and SMLALDX instructions interpret the values from Rn and Rm as four halfword two’s complement signed 16-bit integers.
These instructions:

+ If Xis not present, multiply the top signed halfword value of Rn with the top signed halfword of Rm and the bottom signed halfword
values of Rn with the bottom signed halfword of Rm.

» Orif Xis present, multiply the top signed halfword value of Rn with the bottom signed halfword of Rm and the bottom signed half-
word values of Rn with the top signed halfword of Rm.

» Add the two multiplication results to the signed 64-bit value in RdLo and RdHi to create the resulting 64-bit product.
» Write the 64-bit product in RdLo and RadHi.

Restrictions
In these instructions:

* Do not use SP and do not use PC.
* RdHi and RdLo must be different registers.

Condition Flags

DS60001719B-page 142 © 2022 Microchip Technology Inc.

SAM4CM SERIES

These instructions do not affect the condition code flags.

Examples
SMLAL

SMLALBT

SMLALTB

SMLALD

SMLALDX

R4,

R2,

R2,

R6,

R6,

R5,

R1,

R1,

RS,

R8,

R3,

R6,

R6,

R5,

R5,

R8

R7

R7

R1

R1

Multiplies R3 and R8, adds R5:R4 and writes to
R5:R4

Multiplies bottom halfword of R6 with top
halfword of R7, sign extends to 32-bit, adds
R1:R2 and writes to R1:R2

Multiplies top halfword of R6 with bottom
halfword of R7,sign extends to 32-bit, adds R1:R2
and writes to R1:R2

Multiplies top halfwords in R5 and R1 and bottom
halfwords of R5 and R1l, adds R8:R6 and writes to
R8:R6

Multiplies top halfword in R5 with bottom
halfword of R1l, and bottom halfword of R5 with
top halfword of R1, adds R8:R6 and writes to
R8:R6.

© 2022 Microchip Technology Inc.

DS60001719B-page 143

SAM4CM SERIES

12.6.6.6 SMLSD and SMLSLD

Signed Multiply Subtract Dual and Signed Multiply Subtract Long Dual
Syntax

op{x}{cond} Rd, Rn, Rm, Ra

where:

opis one of:

SMLSD Signed Multiply Subtract Dual.

SMLSDX Signed Multiply Subtract Dual Reversed.
SMLSLD Signed Multiply Subtract Long Dual.

SMLSLDX Signed Multiply Subtract Long Dual Reversed.
SMLAW Signed Multiply Accumulate (word by halfword).

If X is present, the multiplications are bottom x top and top x bottom.
If the X is omitted, the multiplications are bottom x bottom and top x top.

condis an optional condition code, see “Conditional Execution”.

Rdis the destination register.

Rn, Rmare registers holding the first and second operands.

Rais the register holding the accumulate value.

Operation

The SMLSD instruction interprets the values from the first and second operands as four signed halfwords. This instruction:

+ Optionally rotates the halfwords of the second operand.

» Performs two signed 16 x 16-bit halfword multiplications.

» Subtracts the result of the upper halfword multiplication from the result of the lower halfword multiplication.
» Adds the signed accumulate value to the result of the subtraction.

» Wirites the result of the addition to the destination register.

The SMLSLD instruction interprets the values from Rn and Rm as four signed halfwords.

This instruction:

» Optionally rotates the halfwords of the second operand.

+ Performs two signed 16 x 16-bit halfword multiplications.

» Subtracts the result of the upper halfword multiplication from the result of the lower halfword multiplication.
+ Adds the 64-bit value in RdHi and RdLo to the result of the subtraction.

» Writes the 64-bit result of the addition to the RdHi and RdLo.

Restrictions

In these instructions:

» Do not use SP and do not use PC.

Condition Flags

This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur during the multiplications or subtraction.

For the Thumb instruction set, these instructions do not affect the condition code flags.

DS60001719B-page 144 © 2022 Microchip Technology Inc.

SAM4CM SERIES

Examples

SMLSD RO, R4,

SMLSDX R1, R3,

SMLSLD R3, R6,

SMLSLDX R3, R6,

R5,

R2,

R2,

R2,

R6

RO

R7

R7

Multiplies bottom halfword of R4 with bottom
halfword of R5, multiplies top halfword of R4
with top halfword of R5, subtracts second from
first, adds R6, writes to RO

Multiplies bottom halfword of R3 with top
halfword of R2, multiplies top halfword of R3
with bottom halfword of R2, subtracts second from
first, adds RO, writes to R1

Multiplies bottom halfword of R6 with bottom
halfword of R2, multiplies top halfword of R6
with top halfword of R2, subtracts second from
first, adds R6:R3, writes to R6:R3

Multiplies bottom halfword of R6 with top
halfword of R2, multiplies top halfword of R6
with bottom halfword of R2, subtracts second from
first, adds R6:R3, writes to R6:R3.

© 2022 Microchip Technology Inc.

DS60001719B-page 145

SAM4CM SERIES

12.6.6.7 SMMLA and SMMLS

Signed Most Significant Word Multiply Accumulate and Signed Most Significant Word Multiply Subtract

Syntax

op{R}{cond} R4, Rn, Rm, Ra

where:

opis one of:

SMMLA Signed Most Significant Word Multiply Accumulate.

SMMLS Signed Most Significant Word Multiply Subtract.

If the X is omitted, the multiplications are bottom x bottom and top x top.

Ris a rounding error flag. If R is specified, the result is rounded instead of being
truncated. In this case the constant 0x80000000 is added to the product before
the high word is extracted.

condis an optional condition code, see “Conditional Execution”.
Rdis the destination register.

Rn, Rmare registers holding the first and second multiply operands.
Rais the register holding the accumulate value.

Operation

The SMMLA instruction interprets the values from Rn and Rm as signed 32-bit words.

The SMMLA instruction:

+ Multiplies the values in Rn and Rm.

» Optionally rounds the result by adding 0x80000000.
« Extracts the most significant 32 bits of the result.

+ Adds the value of Ra to the signed extracted value.
» Writes the result of the addition in Rd.

The SMMLS instruction interprets the values from Rn and Rm as signed 32-bit words.

The SMMLS instruction:

+ Multiplies the values in Rn and Rm.

» Optionally rounds the result by adding 0x80000000.

+ Extracts the most significant 32 bits of the result.

» Subtracts the extracted value of the result from the value in Ra.
» Writes the result of the subtraction in Rd.

Restrictions

In these instructions:

* Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

DS60001719B-page 146

© 2022 Microchip Technology Inc.

SAM4CM SERIES

Examples

SMMLA RO,
SMMLAR R6,
SMMLSR R3,

SMMLS R4,

12.6.6.8

R4, RS,
R2, R1,
R6, R2,
R5, R3,
SMMUL

R6

R4

R7

R8

; Multiplies R4 and R5, extracts top
; R6, truncates and writes to RO

; Multiplies R2 and R1l, extracts top
; R4, rounds and writes to R6

; Multiplies R6
; subtracts R7,
; Multiplies R5
; subtracts RS,

Signed Most Significant Word Multiply

Syntax

op{R}{cond} R4, Rn, Rm

where:

opis one of:

SMMUL Signed Most Significant Word Multiply.

and R2, extracts top
rounds and writes to
and R3, extracts top
truncates and writes

32

32

32
R3
32
to

bits,

bits,

bits,

bits,
R4.

Ris a rounding error flag. If R is specified, the result is rounded instead of being
truncated. In this case the constant 0x80000000 is added to the product before

the high word is extracted.

condis an optional condition code, see “Conditional Execution”.

Rdis the destination register.

Rn, Rmare registers holding the first and second operands.

Operation

adds

adds

The SMMUL instruction interprets the values from Rn and Rm as two’s complement 32-bit signed integers. The SMMUL instruction:

» Multiplies the values from Rn and Rm.
» Optionally rounds the result, otherwise truncates the result.
» Writes the most significant signed 32 bits of the result in Rd.

Restrictions

In this instruction:

* do not use SP and do not use PC.

Condition Flags

This instruction does not affect the condition code flags.

Examples
SMULL RO,
SMULLR R6,

R4,

R2

R5

7

Multiplies
and writes
Multiplies
and writes

R4
to
R6
to

and R5, truncates top 32 bits
RO
and R2, rounds the top 32 bits
R6.

© 2022 Microchip Technology Inc.

DS60001719B-page 147

SAM4CM SERIES

12.6.6.9 SMUAD and SMUSD

Signed Dual Multiply Add and Signed Dual Multiply Subtract
Syntax

op{X}{cond} Rd, Rn, Rm

where:

opis one of:

SMUAD Signed Dual Multiply Add.

SMUADX Signed Dual Multiply Add Reversed.

SMUSD Signed Dual Multiply Subtract.

SMUSDX Signed Dual Multiply Subtract Reversed.

If X is present, the multiplications are bottom x top and top x bottom.
If the X is omitted, the multiplications are bottom x bottom and top x top.

condis an optional condition code, see “Conditional Execution”.

Rdis the destination register.
Rn, Rmare registers holding the first and second operands.

Operation

The SMUAD instruction interprets the values from the first and second operands as two signed halfwords in each operand. This instruction:

+ Optionally rotates the halfwords of the second operand.

» Performs two signed 16 x 16-bit multiplications.

+ Adds the two multiplication results together.

» Wirites the result of the addition to the destination register.

The SMUSD instruction interprets the values from the first and second operands as two’s complement signed integers. This instruction:

» Optionally rotates the halfwords of the second operand.
» Performs two signed 16 x 16-bit multiplications.

» Subtracts the result of the top halfword multiplication from the result of the bottom halfword multiplication.

» Writes the result of the subtraction to the destination register.

Restrictions

In these instructions:

» Do not use SP and do not use PC.
Condition Flags

Sets the Q flag if the addition overflows. The multiplications cannot overflow.

DS60001719B-page 148

© 2022 Microchip Technology Inc.

SAM4CM SERIES

Examples

SMUAD RO, R4, R5 ; Multiplies bottom halfword of R4 with the bottom
; halfword of R5, adds multiplication of top halfword
; of R4 with top halfword of R5, writes to RO

SMUADX R3, R7, R4 ; Multiplies bottom halfword of R7 with top halfword
; of R4, adds multiplication of top halfword of R7
; with bottom halfword of R4, writes to R3

SMUSD R3, R6, R2 ; Multiplies bottom halfword of R4 with bottom halfword
; of R6, subtracts multiplication of top halfword of Ré6
; with top halfword of R3, writes to R3

SMUSDX R4, R5, R3 ; Multiplies bottom halfword of R5 with top halfword of
; R3, subtracts multiplication of top halfword of R5
; with bottom halfword of R3, writes to R4.

12.6.6.10 SMUL and SMULW
Signed Multiply (halfwords) and Signed Multiply (word by halfword)
Syntax

op{xv}{cond} Rd,Rn, Rm
op{v}{cond} Rd. Rn, Rm

For SMULXY only:
opis one of:
SMUL{XY} Signed Multiply (halfwords).

X and Y specify which halfword of the source registers Rn and Rm is used as
the first and second multiply operand.

If X'is B, then the bottom halfword, bits [15:0] of Rn is used.

If Xis T, then the top halfword, bits [31:16] of Rn is used.If Yis B, then the bot
tom halfword, bits [15:0], of Rm is used.

If Yis T, then the top halfword, bits [31:16], of Rm is used.

SMULW{Y?} Signed Multiply (word by halfword).

Y specifies which halfword of the source register Rm is used as the second multiply operand.
If Yis B, then the bottom halfword (bits [15:0]) of Rm is used.
If Yis T, then the top halfword (bits [31:16]) of Rm is used.

condis an optional condition code, see “Conditional Execution”.
Rdis the destination register.

Rn, Rmare registers holding the first and second operands.
Operation

The SMULBB, SMULTB, SMULBT and SMULTT instructions interprets the values from Rn and Rm as four signed 16-bit integers. These
instructions:

« Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.

» Writes the 32-bit result of the multiplication in Rd.

The SMULWT and SMULWB instructions interprets the values from Rn as a 32-bit signed integer and Rm as two halfword 16-bit signed
integers. These instructions:

» Multiplies the first operand and the top, T suffix, or the bottom, B suffix, halfword of the second operand.

» Wirites the signed most significant 32 bits of the 48-bit result in the destination register.

© 2022 Microchip Technology Inc. DS60001719B-page 149

SAM4CM SERIES

Restrictions
In these instructions:

* Do not use SP and do not use PC.
* RdHi and RdLo must be different registers.

Examples

SMULBT RO, R4, R5 ; Multiplies the bottom halfword of R4 with the
; top halfword of R5, multiplies results and
; writes to RO

SMULBB RO, R4, R5 ; Multiplies the bottom halfword of R4 with the
; bottom halfword of R5, multiplies results and
; writes to RO

SMULTT RO, R4, R5 ; Multiplies the top halfword of R4 with the top
; halfword of R5, multiplies results and writes
; to RO

SMULTB RO, R4, R5 ; Multiplies the top halfword of R4 with the

; bottom halfword of R5, multiplies results and
; and writes to RO

SMULWT R4, R5, R3 ; Multiplies R5 with the top halfword of R3,
; extracts top 32 bits and writes to R4
SMULWB R4, R5, R3 ; Multiplies R5 with the bottom halfword of R3,

; extracts top 32 bits and writes to R4.

DS60001719B-page 150

© 2022 Microchip Technology Inc.

SAM4CM SERIES

12.6.6.11 UMULL, UMLAL, SMULL, and SMLAL

Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit result.
Syntax

op{cond} RdLo, RdHi, Rn, Rm

where:

opis one of:

UMULL Unsigned Long Multiply.

UMLAL Unsigned Long Multiply, with Accumulate.

SMULL Signed Long Multiply.

SMLAL Signed Long Multiply, with Accumulate.

condis an optional condition code, see “Conditional Execution”.

RdHi, RdLoare the destination registers. For UMLAL and SMLAL they also hold the accumulating value.
Rn, Rmare registers holding the operands.

Operation

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers and places the least sig-
nificant 32 bits of the result in RdLo, and the most significant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers, adds the 64-bit result to
the 64-bit unsigned integer contained in RdHi and RdLo, and writes the result back to RdHi and RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies these integers and places
the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies these integers, adds the
64-bit result to the 64-bit signed integer contained in RdHi and RdLo, and writes the result back to RdHi and RdLo.

Restrictions
In these instructions:

* Do not use SP and do not use PC
* RdHi and RdLo must be different registers.

Condition Flags
These instructions do not affect the condition code flags.

Examples
UMULL RO, R4, R5, R6 ; Unsigned (R4,R0) = R5 X R6
SMLAL R4, R5, R3, R8 ; Signed (R5,R4) = (R5,R4) + R3 x R8

© 2022 Microchip Technology Inc. DS60001719B-page 151

SAM4CM SERIES

12.6.6.12 SDIV and UDIV
Signed Divide and Unsigned Divide.
Syntax

SDIV{cond} {Rd,} Rn, Rm
UDIV{cond} {Rd,} Rn, Rm

where:

condis an optional condition code, see “Conditional Execution”.

Rdis the destination register. If Rd is omitted, the destination register is Rn.

Rnis the register holding the value to be